A REPORT TO THE COUNCIL OF HEADS OF MEDICAL SCHOOLS

The selection of medical students at British universities in 1996 and 1997

I C McManus

Professor of Psychology and Medical Education

Centre for Health Informatics and Multiprofessional Education Royal Free and University College Medical School University College London

> Whittington Hospital Campus Highgate Hill London N19 5NF, UK

© COUNCIL OF HEADS OF MEDICAL SCHOOLS AND DEANS OF UK FACULTIES OF MEDICINE (CHMS), OCTOBER 1998

SUMMARY	4
WARNING	5
INTRODUCTION	6
LIMITATIONS OF THE PRESENT ANALYSIS	8
ANALYSIS OF THE 1996 AND 1997 DATA: SELECTION OVERALL	10
DEFINITION OF VARIABLES	10
Educational variables	11
Missing values	12
Dependent (outcome) variable.	13
Statistical analysis	13
The 1996 and 1997 data	14
Overall Logistic Regression of 1996 and 1997 data	14
Analysis of the individual core variables	15
Mean A-level grade	17
Number of A-levels taken	20
Non-Science A-levels	21
Resits at A-levels or Scottish Highers	22
Number of 4 S-levels	25
Date of Application	24
Previous application	25
Number of medical and non-medical applications	
Sex of applicant	28
Age of applicant	28
Social Class	30
Ethnic origin	31
School type	32
Local applicants	34
Gap year (Deferred entry)	35
THE FINAL OVERALL ANALYSIS	36
Differences between 1996 and 1997 applicants	3/
Comparison of 1990 and 1997 selection processes	38
Applicants laking Scotlish Highers alone	40
The statistical interaction of sex and ethnic origin	42
The effects of imputation of missing values using mean substitution	+2 44
UK and non-UK Home applicants: a note of caution.	46
	40
ANALYSIS OF SELECTION AT INDIVIDUAL MEDICAL SCHOOLS	48
SIGNIFICANCE TESTING	48
Effect sizes	49
THE DIFFERENCES BETWEEN MEDICAL SCHOOLS	49
THE SIGNIFICANCE OF DIFFERENCES BETWEEN MEDICAL SCHOOLS	50
ACKNOWLEDGMENTS	51
APPENDICES	52
ADDENDIX 1. BACKGROUND TO THIS REDOPT	52
APPENDIX 7: FAIRNESS AND FOUALITY IN SELECTION IN RELATION TO DISADVANTAGE AND DISCRIMINATION	52
APPENDIX 3: COMPARISON OF DISADVANTAGE OF ETHNIC MINORITIES AT INDIVIDUAL MEDICAL SCHOOLS IN 199	
1992, 1996 and 1997.	61
APPENDIX 4: LIST OF COMPUTER READABLE FILES AVAILABLE FROM THE AUTHOR	63
APPENDIX 5: MEAN A-LEVEL GRADE AND UCAS A-LEVEL POINTS.	64
APPENDIX 6: LIST OF NON-SCIENCE SUBJECTS (PROVIDED BY UCAS).	66
APPENDIX 7: COMPARISON OF PROPORTIONS OF ETHNIC MINORITIES IN CENSUS DATA, UCAS APPLICANTS, AND	D
MEDICAL SCHOOL APPLICANTS.	68
APPENDIX 8: ULASSIFICATION OF MEDICAL SCHOOLS AS 'LOCAL'	69

BIBLIOGRAPHY	
APPENDIX 11: EFFECT SIZES OF SIGNIFICANT EFFECTS AT INDIVIDUAL MEDICAL SCHOOLS.	100
APPENDIX 10: SUMMARY OF SELECTION AT INDIVIDUAL MEDICAL SCHOOLS	72
APPENDIX 9: DESCRIPTION OF APPLICANTS TO EACH MEDICAL SCHOOL.	

Summary

In April 1998 the Council of Heads of Medical Schools (CHMS) commissioned from Professor Chris McManus a study of data from the Universities and Colleges Admissions Service (UCAS) on applicants to medical schools. The purpose was to establish if there was any evidence from that data of any particular group of applicants being disadvantaged in the admissions process. The study was necessarily limited because in most cases neither the academic information (GCSE grades and predicted 'A' level grades) nor information about the personal attributes of applicants (from the personal statements, school or college references and interviews), on which offers to candidates are based, is available on the UCAS database for analysis. The study looked at the relationship between a range of some 20 different measures and the likelihood of medical school applicants receiving a conditional or unconditional offer. The UCAS database included information on about 19,000 applicants who made nearly 93,000 applications to 27 medical schools (there are now 24 because of mergers) in the two years 1996 and 1997.

The most important conclusions are:

- High 'A' level grades are strong predictors of success (but this is retrospective; offers are made on predicted 'A' level grades)
- Previous imbalances for women applicants have disappeared
- Male applicants are disadvantaged at nearly half of all medical schools
- Applicants from ethnic minorities are disadvantaged to a variable degree in certain medical schools
- Applicants applying later in the selection season are disadvantaged
- Applicants making non-medical ('insurance') choices in their applications and those making less than 5 medical choices are disadvantaged
- Overall, candidates from Sixth Form Colleges and Colleges of Further Education are disadvantaged
- Applicants applying to their local medical school have an advantage over those who do not
- There is some evidence overall, but this is significant at only two medical schools, that applicants whose parental occupational background is from a lower socio-economic group are disadvantaged.

Warning

Caution should be applied to any interpretation of the data and analyses in this report on the characteristics, including ethnic origin, of applicants and accepted applicants to university medical schools. In particular, decisions by medical schools on individual applicants take account of much important information provided on UCAS forms and via interviews, including GCSE grades, predicted A-level grades and personal attributes, that is not currently available for inclusion in the data provided by UCAS for the study.

Any questions about the data relating to an individual Medical School should be addressed to the Dean/Head of that School. The addresses for Medical Schools may be obtained from the Executive Officer of the Council of Heads of Medical Schools, Woburn House, 20 Tavistock Square, London WC1H 9HD, telephone number +44 (0) 171 419 5494 and are also available on the CHMS web site: <u>http://www.cvcp.ac.uk/chms/chms_mem.html</u>

Introduction{tc ''Introduction''}

Controversy about medical student selection, and in particular the question of whether or not there is discrimination against various groups of candidates, has appeared in the popular press and in medical journals for the past decade or so, and it has been fuelled by other, albeit controversial, suggestions of discrimination within the health service in general ¹⁻⁵. The central issue has been discrimination against ethnic minorities, but there are also other concerns that applicants from certain backgrounds (school type, social class, sex) or with particular educational qualifications (non-science A-levels), or making particular types of application (e.g. including an insurance choice, or asking for a gap year) are also not doing as well in selection as might be expected.

In February 1998 the Council of Heads of Medical Schools (CHMS) decided that public concern would best be allayed by full publication of data describing how selection was carried out, so that they could be analysed by interested parties. Following a meeting in April 1998 with Medical School Admission Tutors it was realised that there would also be scope for misinterpretation of what is a large and complex data set. I was therefore asked to provide a summary of the data, as well as a full statistical analysis. This would be helpful to those who did not themselves wish to analyse nearly five million raw numbers, and it would also provide some guidance on the technical details and methods for those who did wish to look at the data in detail. Appendix 1 provides a detailed account of the academic background to these questions, and a chronology of the present reports.

The interpretation of the data which are being released is inevitably problematic and therefore Appendix 2 provides a summary of some of the issues related to questions of disadvantage and discrimination. They are of course my own personal interpretation, but may be of use in avoiding the drawing of overly simplistic conclusions of these complex issues.

The report has been produced against some very tight deadlines. Although the decision to make data available publicly on the Web was made in April, with the intention of putting the data on the Web in September, the problems of generating the data in a suitable form, and then having it checked by medical schools, with eventual generation of a revised data set, meant that the finalised data for the present analysis were not available until the end of July. Inevitably therefore certain refinements and subtleties had to be omitted, and the presentation here is of a first pass through a complex data set. No doubt in the future other interested researchers will dig deeper into a rich vein of data and carry out better, more complex, more controlled, analyses. The analysis presented here is not therefore a final analysis but a first analysis of what will probably be many.^{*}

It also spells out clearly some of the important limitations in its interpretation. The report is also supported by a number of other computer readable documents^{*}.

^{*} The author is also uncomfortably aware that the narrow time-window has not allowed all of the detailed checking and particularly double-checking which he would normally regard as desirable. Nevertheless every effort has been taken to ensure that the key results are accurate, and apologies are offered in advance for minor errors of transcription.

^{*} These files are however freely available from the author at i.mcmanus@ucl.ac.uk. It should be noted that the files are very long. The files provided include the SPSS syntax files for converting the EXCEL data into SPSS system files, the SPSS system files themselves, and the SPSS syntax files for carrying out all the analyses reported in this Report. Between them these files should mean that any interested user will be able to repeat the analyses and modify them as they wish, in order to check them for accuracy, and to ask more detailed questions.

This report comes with a number of provisos, which should be read carefully. It is only about selection in 1996 and 1997. Applicants reading the report in 1998 will be applying for admission in 1999, two years after 1997. Medical schools will have changed their admissions policies (and in some cases in London, even their names) during that time, in part in response to the data reported in this analysis. Applicants will also be applying differently, in part in response to the analyses reported here. Selection, like all social systems, is a dynamic process whereby selectors and applicants dance around one another; each is trying to predict what the other will do in the future, and each changes their behaviour in response to beliefs about the other, in order to maximise different outcomes which are optimal from their perspective. Any description is therefore necessarily only a transitory description of a moving target.

Limitations of the present analysis{tc ''Limitations of the present analysis''}

Like any statistical analysis of large amounts of raw data, there are inevitably limitations on what the data can and cannot do, and what interpretations can and cannot be drawn from them. In order to avoid possible confusion these are listed here, although they are inevitably incomplete, and all of the usual provisos in the interpretation of any statistical material must be borne in mind.

- *i.* Disadvantage versus Discrimination{tc "Disadvantage versus Discrimination" \l 2}. The statistical analyses reported here can show that on average certain types of candidate are advantaged or disadvantaged relative to other applicants so that they are more or less likely to receive an offer. That is not however proof of discrimination, which has a legal definition. Nevertheless, it must be remembered that where systematic disadvantage appears to occur then there is also an onus of proof on organisations to demonstrate that discrimination is *not* the explanation, particularly when other studies provide strong evidence of discrimination.
- *ii. Multicollinearity{tc "Multicollinearity"* $\label{eq:linearity}$ This technical term from multivariate statistics refers to the fact that background or predictor variables are often themselves correlated, with the effect that each can cancel out the statistical significance of the other. In the present analysis that might, for instance, happen with MATURE and HEFE, since mature applicants are often in Higher or Further Education. In some schools it might appear therefore that neither is a significant predictor of success even though jointly they are. Further detailed exploration can usually uncover such problems, but it is beyond the scope of this report.
- *iii.* The process of selection{tc "The process of selection" \l 2}. The present analysis can only consider two points during the selection the moment an application arrives and the moment an offer is or is not made. Nothing is recorded in the UCAS records of the intervening processes. In particular, applicants are interviewed in about two thirds of UK medical schools. No systematic data has been made available on who has been interviewed, what the outcome of the interview was, etc. Likewise nothing is known about the reasons for making offers, the details of who makes the offers and the delegation of that process.
- *iv.* The outcome of selection{tc "The outcome of selection" $\backslash l$ 2}. The present data base contains no information on the final outcome of selection in other words, which of the individuals made offers eventually take them up and go to medical schools. That information was not made available and is not as yet publicly available. In some cases failure to take up offers is because of eventual examination failure. In other cases, those in which a candidate holds two or more offers, candidates then choose medical schools, rather than vice-versa ⁶. Nothing is reported here on that process either, although there is information on whether or not candidates accept offers that they are made. The analysis is not straightforward, and was beyond the limited resources of this analysis.
- v. Other important variables{tc "Other important variables" \l 2}. In our previous studies we have included a range of other measures in the studies, in particular GCSE grades, predicted A-level grades, non-European surnames, etc. These are all important predictors of success but none are available in the present study, and therefore they could not be included. Inclusion might alter the interpretation of some results at some institutions.
- vi. Unquantified variables{tc "Unquantified variables" $\label{eq:linear} label{eq:linear} variables$ Much of the important information included on the UCAS form, such as the personal statement and the referee's

report, is essentially unquantifiable at present. It may however be of great importance in selection, and may account for many of the apparent effects found.

- *vii. Multi-level modelling{tc "Multi-level modelling"* *l* 2*}*. Statistical modelling in recent years has made many advances, of which the most important for present purposes is Multi-level or Hierarchical Modelling ⁷⁻⁹. These approaches are highly appropriate to the present type of data. However they are not straightforward to apply, and practical time constraints meant they could not be used in the present report. A study using them is however being planned at present.
- viii. Continuous not discrete nature of effects{tc "Continuous not discrete nature of effects" \l
 2]. The description of variables as 'significant' or 'non-significant' can potentially be very misleading. All that 'significant' means is that the effects are unlikely to be due to chance. That does not, however, mean that medical schools can readily be divided into two groups*. Effect sizes show however that schools show a continuous range of disadvantage for various groups. Care should therefore be taken in interpreting the results presented.
- *ix.* First versus final analysis{tc "First versus final analysis" $\label{eq:linear} 12$ }. The analyses presented here are not the 'final word' on the data made available about selection. The data are now publicly available for any interested persons to study as they wish. This report is therefore the *first analysis* rather than the *final analysis*. It is not expected that everything in it has been done precisely as others would wish to do, or taking into account all the subtleties of the data. It is merely a first pass at it, carried out within some very tight time constraints, in order that applicants and medical schools will have some idea of the pattern of effects shown in the mountain of numbers.
- x. Interpretation in relation to previous studies{tc "Interpretation in relation to previous studies" $\langle l 2 \rangle$. The analyses presented here are principally those of data from 1996 and 1997. However scientific analysis necessarily considers the best interpretation of any set of data not only in terms of its own internal patterns and consistency, but also its relation to the wider body of scientific literature and analysis of related phenomena. That has been done here to some extent, in particular concerning the much more detailed but somewhat smaller study carried out of selection in 1991¹⁰. Such an approach is valid in so far as it can reasonably be expected that the processes and mechanisms of selection have not changed between 1991 and 1996/7. Care should therefore be taken in comparing studies at different times. The mere passage of time is not however adequate demonstration that processes have changed, and the claims should ideally be accompanied by supporting evidence.

^{*} An old psychological joke says that "Psychologists divide people into two types — those that divide people into two types and those that don't". Most psychological descriptions (extroversion, neuroticism, etc) actually show a continuous range of values in the population; nevertheless people find it much easier to describe people as simply 'extravert' or 'introvert'. Likewise is the case with medical schools.

Analysis of the 1996 and 1997 data: Selection overall{tc ''Analysis of the 1996 and 1997 data: Selection overall''}

Definition of variables{tc "Definition of variables" \l 2}

All original data were supplied by UCAS and the reader is referred to their Annual Report¹¹ for a more detailed description. For many variables I have created transformed measures, and these are described further in the report.

Prior to considering selection at the level of individual medical schools it is desirable to look at selection overall. This first of all confirms that the majority of variables which are being considered are indeed predictors^{*} of selection (as would be expected from previous work ^{10,, 12, 13}), and secondly allows a detailed analysis of the best ways in which to divide up continuous variables, such as age, date of application, number of applications, etc, of which there are several.

The analysis as presented here followed a definite evolution, and in a first pass through the data (not reported here) initially sixteen variables were considered in the analysis. In the second stage, a slightly different set of nineteen variables was used, eighteen of which are 'core variables', and the last one, wanting to take a gap year, is included as a separate addition, mainly because it is only available, for technical reasons, for the 1997 data. This basic set of 19+1 variables was used during the majority of the overall analysis reported here. On this basis it was decided to extend the set slightly, and in the version used for the analysis of individual medical schools, a total of 21+1 variables are used. Although slightly confusing to the reader, this does show how the analysis has responded iteratively to what has been found in the data. There are strong statistical reasons for keeping the core analyses identical for the 1996 and 1997 applicants, and therefore gap year was only looked at as an addendum to the main analysis. A final addition to the analysis was Scottish Highers for applicants to Scottish schools; in part due to oversight these had not been handled properly during the first passes through the data, and therefore they are not properly included in the many of the analyses presented below. They are however handled fully and properly in the analyses of individual medical schools described in the second part of the report.

The eighteen+ one variables considered in this stage of the overall analysis have been labelled as Educational, Applicational, and Demographic. In analysing them they should be read in conjunction with UCAS's own definitions of the variables, which are available from UCAS and are on their web-site. The variables are:

^{*} It should be emphasised that 'predict' is used in the statistical sense that a knowledge of one measure allows an inference about the other measure beyond the expectation of chance. Prediction in the statistical sense does not imply any causal ordering, and it should be remembered that achieved A-level grades in particular are actually known about in a majority of applicants *after* offers have been made. However formal causal modelling of the relationship between estimated grades, offers and achieved grades can be carried out, and is described in our 1995 paper looking at selection in 1991.

Description	Definition	Variable
Educational variables	s s	, ur lubic
Moon A lovel	Average grade obtained for all A levels taken (evaluding Coneral	AG
grade	Studies and AS-levels) scored as $A=10$ B=8 C=6 D=4 E=2 O/E =	AU
graue	0 Mean value substituted for candidates taking one or no A-levels	
	See appendix 5 for relationship to UCAS A-level point scheme.	
Number of A-	Number of A-levels taken (excluding General Studies and AS-levels)	AN
levels taken	Mean value substituted for candidates taking one or no A-levels.	
Non-Science A-	One or more A-levels in a non-Science subject (see Appendix 6 for	NONSCIA
levels	definition of Science subjects).	
Resat A-levels or	Any A-levels or Highers have been resat.	RESITS
Highers		
General Studies A-	General Studies A-level has been sat on some occasion.	GSTAKEN
level taken		
General Studies A-	Grade obtained at General Studies (if taken), scored as A=10, B=8,	GSGRADE1
level grade	C=6, D=4, E=2, O/F = 0. Mean substituted for candidates not taking	
	General Studies.	
AS-levels taken	One or more subjects taken at AS-level.	ASN
Applicational wariabl		1
Applicational variable	Scored as 1-by 15 th October 2-by 15 th November 3-by 15 th	
Date of application	December 4-after 15 th December For technical reasons, the first two	AFFDATEI
	are strictly defined as "entered onto LICAS computer by 15 th	
	October/November" whilst the third means "arrived at UCAS offices	
	by 15 th December".	
Previous	Evidence of an application for medicine in either of the two previous	PREVAPP
application	years. Candidates identified as identical if had same date of birth, sex	
	and post-code.	
Insurance choice	Five applications for medicine and one application for a non-medical	INSURNCE
	course.	
Less than five	Less than five applications in total for medicine.	LE4MED
applications		
Six applications	All six applications for medicine.	MEDAPP6
for medicine		
Gap year	Only available for 1997 applicants. Scored as requesting a gap year if	GAPYEAR
	application form marked for 1998 entry.	
Demographic variabl	es	i
Sex	Male or Female	SEX1
Mature applicant	Aged over 21 on 30 th September 1996 or 1997 for 1996/1997	MATURE
~	applicants.	
Social class	Registrar-General's Social class groupings (I, II, III, IV, V), classified	SOCIAL2
	on basis of Parental Occupation on application form. Mean score	
T4hada ant 1	substituted for missing or other values.	
Ethnic origin	sent-description of ethnic origin as coded on categories provided on	ETHNIC3
Secondamy school	application 10111. Second as whether or not applicant had applied from a school	SCHOOL 2
type	classified by UCAS as 'Independent'	SCHOOL2
Local applicant	Proportion of medical schools applied to in which applicant's address	PLOCAL /
	is in same area as medical school applied to Definitions of local for	LOCAL
	each medical school shown in appendix 8. At application level scored	
	as 1 or 0.	

^{*} Due to a minor programming error this variable was inadvertently coded as being *older* than 21 (i.e. 22 +) rather than 21 or older (i.e. including 21 as mature). This reduces the number of mature applicants by a small amount. The error is regrettable but was noted only very late in the production of the report, when it was too late to redo all of the calculations. It is extremely unlikely that it makes any substantial difference to any of the conclusions, but that is of course a hypothesis which can be tested by any one who is interested.

For completeness I also include at this point the two variables which will be used for analysing candidates taking just Scottish Highers and applying to Scottish schools. As will be explained later, they are not included in the overall analysis, but only in the analyses of the five Scottish schools. Their description is formally identical to that used previously for handling A-levels.

Description	Definition	Variable				
Educational variables for candidates taking Scottish Highers						
Mean Scottish Highers grade	Average grade obtained for all Highers taken, scored as A=6, B=4, C=2. mean value substituted for candidates taking no Highers.	SHG				
Number of Scottish Highers taken	Number of Highers taken. Mean value substituted for candidates taking no Highers.	SHN				

The analyses reported here of selection overall were carried out by means of the SPSS syntax file REPORT.SPS, and can be used to generate all of the output discussed here.

Each of the core variables and then gap year will be considered in turn. Each will be analysed both in an unadjusted analysis (i.e. a simple effect, entered into the analysis as the only predictor⁺), and in an adjusted analysis (i.e. for the core variables, taking all the other seventeen variables into account, so that multicollinearity between variables is taken fully into account).

Missing values{tc "Missing values" \l 3}

In any multivariate analysis, missing values are always a problem. In the present analysis they have mostly been taken into account by means of mean substitution, the population mean for all valid cases being substituted for the missing values. Although not always optimal, this is a simple, effective procedure which is frequently used and rarely results in major problems ¹⁴, although it is accepted that it can result in occasional problems when large amounts of data are missing¹⁵. It has the major advantage over the default of many statistical packages, which is list-wise deletion, that the sample^{*} size is kept at its maximal value (and in large complex data sets almost all subjects are found to be missing some measures). The possible effects of this imputation of missing values will be discussed again at the end of the section describing selection overall.

⁺ In multivariate analysis the term 'predictor' tends to be preferred to the more conventional 'independent variable', mainly because the so-called 'independent variables' in most multivariate analyses are strictly not independent of one another in a statistical sense, being correlated to a greater or lesser extent. The term 'predictor' will therefore be used here.

^{*} Although technically the present data do not form a 'sample', representing the entire population for that year, the conventional statistical terminology will be used in this report.

Dependent (outcome) variable.{tc ''Dependent (outcome) variable.'' \l 3}

For the overall analysis, each candidate had applied to a maximum of six medical schools, and therefore could have received offers from up to six medical schools. The actual number of offers (variable NDECIS) is shown below:

NDECIS

			Valid	Cum
Value	Frequency	Percent	Percent	Percent
.00	7781	41.1	41.1	41.1
1.00	4495	23.7	23.7	64.8
2.00	3272	17.3	17.3	82.1
3.00	2147	11.3	11.3	93.4
4.00	955	5.0	5.0	98.5
5.00	291	1.5	1.5	100.0
6.00	2	.0	.0	100.0
Total	18943	100.0	100.0	
Missing c	ases 0)		
	Value .00 1.00 2.00 3.00 4.00 5.00 6.00 Total Missing c	Value Frequency .00 7781 1.00 4495 2.00 3272 3.00 2147 4.00 955 5.00 291 6.00 2 Total 18943 Missing cases 0	Value Frequency Percent .00 7781 41.1 1.00 4495 23.7 2.00 3272 17.3 3.00 2147 11.3 4.00 955 5.0 5.00 291 1.5 6.00 2 .0 Total 18943 Missing cases 0	Valid Value Frequency Percent Percent .00 7781 41.1 41.1 1.00 4495 23.7 23.7 2.00 3272 17.3 17.3 3.00 2147 11.3 11.3 4.00 955 5.0 5.0 5.00 291 1.5 1.5 6.00 2 .0 .0 Total 18943 100.0 100.0 Missing cases 0

41% of applicants received no offers at all, 24% received just one offer, and the remaining 35% of candidates received two or more offers. Since without an offer a candidate cannot be admitted at all, then the best outcome variable for the present purpose is whether or not a candidate has received one or more offers. The variable OFFER is therefore the outcome variable for the overall analysis.

OFFER	At 1	least one	offer recei	ved			
						Valid	Cum
Value Labe	el		Value	Frequency	Percent	Percent	Percent
No offers			.00	7781	41.1	41.1	41.1
1+ offer			1.00	11162	58.9	58.9	100.0
			Total	18943	100.0	100.0	
Valid case	es	18943	Missing c	ases 0			

Statistical analysis{tc ''Statistical analysis'' \l 3}

The analysis was by means of a logistic regression⁺, carried out by the SPSS LOGISTIC REGRESSION procedure. All eighteen core variables were entered simultaneously, and the significance of each assessed after taking the others into account. All predictor variables were either binary, or, if they had more than two values, their linear effects were tested. This report will first describe the overall regression on the core variables, and then each variable will be considered in turn, looking at the adjusted and unadjusted effects. In addition for continuous variables the report will look at the justification for using a simple linear effect, and for variables with more than two categories, the justification for using a simpler, reduced set of binary variables.

⁺Logistic regression is a standard technique in epidemiology, and many other areas of medical and psychological research. The presentation of results is usually in terms of the odds ratio and the log (odds ratio), and these are also used here.

The 1996 and 1997 data{tc "The 1996 and 1997 data. " \l 2}

The overall analysis considers the combined 1996 and 1997 data sets. There is therefore a total of 18943 candidates, 9485 in 1996 and 9458 in 1997 (although a small number in 1997 would have previously applied unsuccessfully in 1996). In the first instance the 1996 and 1997 applicants are considered in a single analysis. Later in this report the overall analyses are described separately for the 1996 and 1997 applicants, along with tests of whether are applicants of the core variables show significantly different effects across the two years.

Overall Logistic Regression of 1996 and 1997 data{tc ''Overall Logistic Regression of 1996 and 1997 data'' \l 3}

The dependent variable, OFFER, indicates whether or not the candidate had received at least one offer from a medical school. Overall 59% of candidates received at least one offer. Below is shown^{*} the significance of each of the variables in predicting whether or not an applicant receives an offer.

Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4682	.0128	1329.397	1	.0000	.2275	1.5971
AN	.1378	.0374	13.6136	1	.0002	.0213	1.1478
NONSCIA	0787	.0471	2.7850	1	.0951	0055	.9243
RESITS	9392	.0685	188.1605	1	.0000	0852	.3909
GSTAKEN	.2054	.0440	21.8045	1	.0000	.0278	1.2280
GSGRADE1	.2071	.0327	40.0669	1	.0000	.0385	1.2301
ASN	.0474	.0420	1.2710	1	.2596	.0000	1.0485
APPDATE1	5183	.0269	372.3943	1	.0000	1202	.5956
PREVAPP	0258	.0642	.1619	1	.6874	.0000	.9745
INSURNCE	1857	.0439	17.9057	1	.0000	0249	.8305
LE4MED	7067	.0574	151.4535	1	.0000	0763	.4933
MEDAPP6	0952	.0830	1.3145	1	.2516	.0000	.9092
SEX1	.4336	.0361	144.5989	1	.0000	.0746	1.5428
MATURE	-1.1380	.0593	367.8639	1	.0000	1194	.3205
SOCIAL2	1186	.0201	34.9269	1	.0000	0358	.8881
ETHNIC3	-1.0855	.0402	728.9912	1	.0000	1683	.3377
SCHOOL2	.1350	.0428	9.9341	1	.0016	.0176	1.1445
PLOCAL	.1394	.0552	6.3731	1	.0116	.0131	1.1496
Constant	2450	.2484	.9726	1	.3240		

All but four of the predictors (non-Science A-levels taken, number of AS levels taken, six medical school applications, and previous application to medical school) are significant at the 0.05 level, and the majority are significant at least at the 0.001 level. The best predictor is average A-level grade, followed by ethnic origin, date of application, age, resit examinations, sex, four or less medical school applications, General Studies grade, Social class, General Studies taken, insurance choice, number of A-levels, number of local schools and Independent school. It should however be emphasised that these predictors are not 100% perfect at predicting the success or failure of applicants to obtain an offer. The table below shows the effectiveness of a simple predictor derived from the logistic regression, in relation to the actual outcome of the application, in terms of one or more offers received:

^{*} In this standard SPSS output format, B is the unstandardised logistic regression coefficient (i.e. the multiplier in the regression equation), and is expressed in the units of the predictor variable itself. SE is the standard error of B, and the column marked Wald provides a significance test for each predictor, after taking all other predictors into account. DF is the degrees of freedom for the Wald test, and Sig is the significance level. R is a correlation coefficient, and exp(B) is the exponentiated B coefficient: since B is a log(odds ratio), exp(B) is an odds ratio itself.

rect
(-

Prediction based on all eighteen core variables has a sensitivity of 63.4%, specificity of 84.6%, and positive and negative predictive values of 74.1% and 76.8%.

Analysis of the individual core variables{tc "Analysis of the individual core variables" \l 3}

Several of the variables included in the previous logistic regression are continuous but were treated as though they were linear (e.g. A-level grades, numbers of A-levels, etc), or have been categorised (e.g. MATURE). These will therefore be included in the following analyses, the basic strategy in each case being to consider each variable in turn, looking at its predictive value on its own and after taking into account all of the other eighteen basic predictors.

A-levels and Scottish Highers{tc "A-levels and Scottish Highers" \l 3}

The table below shows the numbers of candidates taking different combinations of A-levels and Scottish Highers.

SHN Count	. 1							Pa	ge 1 of 1
ANI		.00	4.00	5.0	0 6.00	7.00	0 8.00	9.00	Row Total
.00	13	862	47	368	591	257	24	3	2652 14.0
2.00	 3 1	818	+ 	13 	48	7			+ 887 4.7
3.00	+	346	+ 4 	34	12	1			+ 11898 62.8
4.00	31	.57	+ 	1	+ 	1	+		+ 3159 16.7
5.00	+	300	+ 		+ 		+ 		+ 300 1.6
6.00	+	41	+						+ 41 .2
7.00	+	4	+						+ 4 .0
8.00	+	2	+ 		+ 		+ 		+ 2 .0
Column Total	+ 175 92	30 2.5	51 .3	416 2.2	651 3.4	266 1.4	26 .1	3 .0	18943 100.0

AN Number of A-levels (ex GS) by SHN Number of Highers (ex GS)

It can be seen that although, for various reasons there is a substantial number of candidates for whom neither A-level nor Highers results are available, and few candidates who take both Scottish Highers and A-levels. It is hardly surprising that the majority of candidates who apply from the Scottish region have taken only Highers (82% of 1598), compared with a fraction of a percent from other regions. The number of applicants at individual medical schools taking only Highers is high at medical schools in Scotland (Aberdeen: 58%; Dundee: 45%; Edinburgh: 27%; Glasgow: 52%; St Andrews: 48%), although there is variation between schools. Outside of Scotland, few applicants to medical schools take only Highers, the proportions in schools with more than 2% being Newcastle (8.7%), Manchester (4.4%), Oxford (4.4%), Cambridge (3.6%), Belfast (2.8%), Sheffield (2.8%), and Leeds (2.3%).

The handling of Highers and A-levels is not straightforward, principally because of the problem of equivalence, there being no accepted way of converting A-level results to equivalent Highers results, or vice-versa^{*}. For the overall analyses at the level of the candidate, described in the first part of this report, I have used only A-levels, since only a small proportion of applicants overall take only Highers⁺. However for the detailed analyses at the level of medical schools, I have included two additional variables, SHN and SHG, the number of Highers and the mean grade at Highers, *for the analyses of the five Scottish schools only*. By including both A-levels and Highers as separate predictors, any problems due to non-equivalence in scales are circumvented, and all Scottish applicants can be included, irrespective of the qualifications taken.

The specific handling of A-levels is also not without its complications, not least because subjects can be taken on several different occasions. The file provided by UCAS presents several different forms of calculation. The analysis has been restricted to what I have called AG and AN, but I am confident given the high correlation between all such measures that equivalent results would be obtained with any other variants upon the technique.

UCAS points have specifically not been used as the single measure of academic achievement. Firstly, they include General Studies, which is controversial in selection, and therefore needs handling separately. Secondly, they include AS-level points in some cases, and again, these need handling separately. Thirdly, UCAS points have a maximum of 30, and for candidates taking four or more A-levels are based on their best grades. Although this is satisfactory for typical applicants to UCAS, medical school applicants are amongst the very highest A-level achievers, and many hit a 'ceiling' of 30 points. Separating out mean grade and number of A-levels allows further room to assess differences in achievement, differences which selectors may well regard as of importance when reading an UCAS form.

^{*} It should be noted that UCAS does (e.g. its Statistical Bulletin Number 3) describe points schemes which appear to be broadly equivalent for Highers and A-levels, so that a candidate may, for instance, score 24 on each scheme. However although in each scheme better, academically more able, candidates do score higher, there is no sense in which the schemes propose that a candidate scoring 24 points at A-levels (BBB) is necessarily equivalent to a candidate scoring 24 points at Highers (BBBBBB); it may be, for instance, that 24 on one scale is equivalent to 26 on the other.

⁺ In an ideal world the overall analyses would also have been re-calculated with SHN and SHG included at all stages. However this report has been produced under a very tight time-table, and the present route was therefore taken. Researchers concerned that it may have distorted the findings can of course recalculate the results with the inclusion of Highers.

Mean A-level grade{tc ''Mean A-level grade'' \l 3}

Mean A-level grade overall is calculated as the total A-level grade averaged across all subjects taken divided by the total number of A-levels taken^{*} (AS-levels and General Studies are omitted from this calculation)⁺. In order to plot the relationship of offers to mean A-level grade, the grades are grouped on the basis that if a candidate had taken three A-levels (the mode) then the grades are equivalent to AAA, AAB, ABB, BBB, etc. The number of candidates in each of the groups are shown in the table in the text below. It should be noted that although a mean grade of 8.03 has been substituted for those with missing A-level grades for the overall analyses, for this section these candidates are in a separate 'missing' group.

Throughout this section A-level grades described are those attained by the candidate. However the majority of applicants apply *before* taking their A-levels, and so medical schools are making offers on the basis of GCSEs and predicted A-level grades (neither of which is available for study here).

AGGRP Mean A-	-level grade, grou	ped; equiva	lent to 1	0=AAA, 8=	BBB, etc
				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
Missing	.00	2652	14.0	14.0	14.0
EEE	2.00	112	.6	.6	14.6
DEE	2.67	199	1.1	1.1	15.6
DDE	3.33	144	.8	.8	16.4
DDD	4.00	407	2.1	2.1	18.6
CDD	4.67	568	3.0	3.0	21.5
CCD	5.33	607	3.2	3.2	24.8
CCC	6.00	1008	5.3	5.3	30.1
BCC	6.67	1216	6.4	6.4	36.5
BBC	7.33	1404	7.4	7.4	43.9
BBB	8.00	2312	12.2	12.2	56.1
ABB	8.67	2396	12.6	12.6	68.8
AAB	9.33	2562	13.5	13.5	82.3
AAA	10.00	3356	17.7	17.7	100.0
	Total	18943	100.0	100.0	

^{*} There are some difficulties in how many A-levels can be regarded as taken when resits, etc, are taken into account, and therefore what should be the denominator. As a result the raw data provide several scores, calculated on a slightly different basis, and which present the results slightly differently. In practice none of these methods produce much difference in the final outcome, since all A-level measures correlate extremely highly with one another. As always, any reader concerned to test out these points is fully able to do so using the files provided.

⁺ This method of presentation is different from that used by UCAS in its calculation of A-level points. Appendix 5 discusses the relationship between the two measures.

The table below shows the proportion of candidates in each group receiving offers, together with approximate standard errors and 95% confidence intervals (calculated using the ONEWAY program in SPSS).

Group	Count	p(offer)	StdError	95 Pct Co	nf Int	for Mean
Missing	2652	4679	0097	4489	т0	4870
EEE	112	1250	0314	0628	TO	1872
DEE	199	.1206	.0231	.0750	TO	.1662
DDE	144	.1528	.0301	.0933	TO	.2122
DDD	407	.1474	.0176	.1128	TO	.1820
CDD	568	.2394	.0179	.2042	то	.2746
CCD	607	.2751	.0181	.2395	ТО	.3108
CCC	1008	.3492	.0150	.3197	ТО	.3787
BCC	1216	.4112	.0141	.3835	ТО	.4389
BBC	1404	.4972	.0133	.4710	ТО	.5233
BBB	2312	.5852	.0102	.5651	ТО	.6053
ABB	2396	.6740	.0096	.6553	ТО	.6928
AAB	2562	.7802	.0082	.7642	ТО	.7963
AAA	3356	.8883	.0054	.8776	ТО	.8989
Total	18943	.5892	.0036	.5822	ТО	.5962

The table below shows the logistic regression for each of the grouped grades^{*}, when it is (a) the only variable in the logistic regression and b) when the other fifteen variables are taken into account; in each case the reference category is AAA. It is clear that in both cases, just as is shown in the figure, that the likelihood of acceptance is effectively a linear function of mean A-level grade.

Simple	Simple (unadjusted) effects							
Varia	ole	В	S.E.	Wald	df	Sig	R	Exp(B)
AGGRP				2909.948	13	.0000	.3353	
Miss	(1)	-2.2015	.0672	1073.023	1	.0000	2043	.1106
EEE	(2)	-4.0190	.2909	190.8474	1	.0000	0858	.0180
DEE	(3)	-4.0598	.2245	327.1361	1	.0000	1126	.0173
DDE	(4)	-3.7861	.2380	253.0172	1	.0000	0989	.0227
DDD	(5)	-3.8281	.1502	649.8305	1	.0000	1589	.0218
CDD	(6)	-3.2289	.1126	822.8583	1	.0000	1789	.0396
CCD	(7)	-3.0419	.1061	821.5447	1	.0000	1787	.0477
CCC	8)	-2.6956	.0858	986.2805	1	.0000	1959	.0675
BCC	(9)	-2.4322	.0800	924.4579	1	.0000	1896	.0878
BBC	(10)	-2.0845	.0765	742.5918	1	.0000	1699	.1244
BBB	(11)	-1.7289	.0692	624.8126	1	.0000	1558	.1775
ABB	(12)	-1.3466	.0700	369.9213	1	.0000	1198	.2601
AAB	(13)	8060	.0727	123.0591	1	.0000	0687	.4467
Consta	ant	4454	.0351	161.1879	1	.0000		

^{*} It should be noted that when in logistic regression a variable has several categories, then one must be designated as a reference category, and significance levels are calculated for each of the remaining categories *relative to the reference category*. The standard errors and significance levels must therefore be treated with great care, particularly when making any comparison other than of a category against the reference category. Revised analyses should be carried out to answer such different questions.

ted e	ffects						
ole	В	S.E.	Wald	df	Sig	R	Exp(B)
			1425.705	13	.0000	.2336	
(1)	-1.3509	.0799	286.0240	1	.0000	1052	.2590
(2)	-2.7990	.3064	83.4611	1	.0000	0564	.0609
(3)	-3.1543	.2377	176.0764	1	.0000	0824	.0427
(4)	-2.9699	.2539	136.8059	1	.0000	0725	.0513
(5)	-3.0449	.1597	363.7158	1	.0000	1187	.0476
(6)	-2.5027	.1220	420.9157	1	.0000	1278	.0819
(7)	-2.4242	.1150	444.3918	1	.0000	1313	.0885
(8)	-2.1967	.0935	552.0572	1	.0000	1464	.1112
(9)	-1.9751	.0870	515.2613	1	.0000	1414	.1388
(10)	-1.7549	.0828	448.8433	1	.0000	1320	.1729
(11)	-1.4330	.0748	366.7467	1	.0000	1192	.2386
(12)	-1.0857	.0750	209.6415	1	.0000	0900	.3377
(13)	6500	.0773	70.6766	1	.0000	0517	.5221
	<pre>(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)</pre>	ted effectsbleB(1)-1.3509(2)-2.7990(3)-3.1543(4)-2.9699(5)-3.0449(6)-2.5027(7)-2.4242(8)-2.1967(9)-1.9751(10)-1.7549(11)-1.4330(12)-1.0857(13)6500	ted effects0leBS.E.(1)-1.3509.0799(2)-2.7990.3064(3)-3.1543.2377(4)-2.9699.2539(5)-3.0449.1597(6)-2.5027.1220(7)-2.4242.1150(8)-2.1967.0935(9)-1.9751.0870(10)-1.7549.0828(11)-1.4330.0748(12)-1.0857.0750(13)6500.0773	ted effectsbleBS.E.Wald11)-1.3509.0799286.0240(2)-2.7990.306483.4611(3)-3.1543.2377176.0764(4)-2.9699.2539136.8059(5)-3.0449.1597363.7158(6)-2.5027.1220420.9157(7)-2.4242.1150444.3918(8)-2.1967.0935552.0572(9)-1.9751.0870515.2613(10)-1.7549.0828448.8433(11)-1.4330.0748366.7467(12)-1.0857.0750209.6415(13)6500.077370.6766	bed effects ble B S.E. Wald df 1425.705 13 (1) -1.3509 .0799 286.0240 1 (2) -2.7990 .3064 83.4611 1 (3) -3.1543 .2377 176.0764 1 (4) -2.9699 .2539 136.8059 1 (5) -3.0449 .1597 363.7158 1 (6) -2.5027 .1220 420.9157 1 (7) -2.4242 .1150 444.3918 1 (8) -2.1967 .0935 552.0572 1 (9) -1.9751 .0870 515.2613 1 (10) -1.7549 .0828 448.8433 1 (11) -1.4330 .0748 366.7467 1 (12) -1.0857 .0750 209.6415 1 (13) 6500 .0773 70.6766 1	bed effects ble B S.E. Wald df Sig 1425.705 13 .0000 (1) -1.3509 .0799 286.0240 1 .0000 (2) -2.7990 .3064 83.4611 1 .0000 (3) -3.1543 .2377 176.0764 1 .0000 (4) -2.9699 .2539 136.8059 1 .0000 (5) -3.0449 .1597 363.7158 1 .0000 (6) -2.5027 .1220 420.9157 1 .0000 (7) -2.4242 .1150 444.3918 .0000 (8) -2.1967 .0935 552.0572 1 .0000 (9) -1.9751 .0870 515.2613 1 .0000 (10) -1.7549 .0828 448.8433 1 .0000 (11) -1.4330 .0748 366.7467 1 .0000 (12) -1.0857 <t< td=""><td>bed effectsbleBS.E.WalddfSigR1425.70513.0000.2336(1)-1.3509.0799286.02401.00001052(2)-2.7990.306483.46111.00000564(3)-3.1543.2377176.07641.00000824(4)-2.9699.2539136.80591.00000725(5)-3.0449.1597363.71581.00001187(6)-2.5027.1220420.91571.00001278(7)-2.4242.1150444.39181.00001313(8)-2.1967.0935552.05721.00001464(9)-1.9751.0870515.26131.00001320(11)-1.4330.0748366.74671.00001192(12)-1.0857.0750209.64151.00000517(13)6500.077370.67661.00000517</td></t<>	bed effectsbleBS.E.WalddfSigR1425.70513.0000.2336(1)-1.3509.0799286.02401.00001052(2)-2.7990.306483.46111.00000564(3)-3.1543.2377176.07641.00000824(4)-2.9699.2539136.80591.00000725(5)-3.0449.1597363.71581.00001187(6)-2.5027.1220420.91571.00001278(7)-2.4242.1150444.39181.00001313(8)-2.1967.0935552.05721.00001464(9)-1.9751.0870515.26131.00001320(11)-1.4330.0748366.74671.00001192(12)-1.0857.0750209.64151.00000517(13)6500.077370.67661.00000517

It is clear, both from the tables above, and from the figure that except at the very low end of the scale where there are relatively few candidates, the likelihood of receiving an offer is linearly proportional to the mean A-level grade (and would be more so if 'floor' effects were removed by plotting on a logistic ordinate), so that it is reasonable to use the linear component of the variable AG in the overall model.

[Figure: offers received v mean A level grade]

Number of A-levels taken{tc ''Number of A-levels taken'' \l 3}

The total number of A-levels taken is shown in the table below.

AN Number of A-level	ls (ex G	S)			
Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	2.00	890 11920	4.7	4.7	4.7
Missing values (mean sub)	3.19	2654	14.0 16.7	14.0 16.7	81.5 98.2
	5.00	300	1.6	1.6	99.8
	7.00	4	.0	.0	100.0 100.0
	Total	18975	100.0	100.0	20010

Note: the value of 3.19 is the population mean and has been used to substitute for missing values.

The vast majority of applicants have 3 or 4 A-levels (or are missing). Table 4 shows the logistic regression of OFFER on the number of A-levels taken. There is some evidence overall of a linear trend on the simple effect of the number of A-levels taken, although the adjusted table 4 suggests that the effect is mainly restricted to the most frequent values of 2, 3 and 4 A-levels.

Simple (unadjusted) effects of number of A-levels (relative to 3 A-levels)

Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AN			591.0254	7	.0000	.1500	
2	-1.2650	.0752	282.9573	1	.0000	1047	.2822
Missing	5779	.0432	178.7768	1	.0000	0830	.5611
4	.3745	.0430	75.9225	1	.0000	.0537	1.4542
5	2219	.1177	3.5513	1	.0595	0078	.8010
б	5961	.3138	3.6098	1	.0574	0079	.5510
7	-1.5458	1.1542	1.7938	1	.1805	.0000	.2131
8	2.6858	3.5384	.5762	1	.4478	.0000	14.6704
Constant	.3062	.4672	.4295	1	.5122		
Adjusted	effects						
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AN			29.6216	7	.0001	.0247	
2	.0759	.0962	.6219	1	.4303	.0000	1.0788
Missing	0177	.0576	.0950	1	.7579	.0000	.9824
4	.2709	.0532	25.9256	1	.0000	.0305	1.3111
5	.2052	.1419	2.0917	1	.1481	.0019	1.2278
6	.0823	.3786	.0473	1	.8279	.0000	1.0858
7	-1.3664	1.2188	1.2568	1	.2623	.0000	.2550
8	4.4296	9.4163	.2213	1	.6381	.0000	83.9010

Non-Science A-levels{tc ''Non-Science A-levels'' \l 3}

The tables below show the frequency distributions of the numbers of non-science A-levels. The simple variable AXN has a large number of missing variables and there are very few candidates with 2 or more science A-levels. The derived variable NONSCI (see below) has therefore been calculated on the basis of *any* evidence of at least one non-science A-level, with missing values being set at the modal value of 0.

AXN	Number of no	n-Science A-	-levels (ex	GS)		
					Valid	Cum
Value Lab	el	Value	Frequency	Percent	Percent	Percent
		.00	12503	66.0	76.7	76.7
		1.00	3253	17.2	20.0	96.7
		2.00	375	2.0	2.3	99.0
		3.00	144	.8	.9	99.9
		4.00	15	.1	.1	100.0
		5.00	1	.0	.0	100.0
		•	2652	14.0	Missing	
		Total	18943	100.0	100.0	
NONSCIA	1+ Non-Scien	ce A-levels	taken			
					Valid	Cum
Value Lab	el	Value	Frequency	Percent	Percent	Percent
No non-sc	i A-level	.00	15155	80.0	80.0	80.0
Non-sci A	-level	1.00	3788	20.0	20.0	100.0
		-				
		Total	18943	100.0	100.0	

Unadjusted effects of non-science A-levels are complex, as is shown in the table below, candidates with 1 non-science A-level apparently doing better, but those with 2 or more doing less well. Adjustment for other factors shows a clearer situation, in which all candidates with one or more non-science A-levels do less well overall during selection. The use of the NONSCIA variable is therefore justified.

Simple	(unadjusted)	effects (r	elative to	no no	on-science	A-leve	ls)
Variabl	e l	3 S.E.	Wald	df	Sig	R	Exp(B)
AXN			32.7095	5	.0000	.0323	
1	.1392	2.0408	11.6303	1	.0006	.0210	1.1494
2	337	5.1050	10.3339	1	.0013	0196	.7135
3	4282	2.1677	6.5234	1	.0106	0144	.6517
4	5618	.5179	1.1767	1	.2780	.0000	.5702
5	-3.563	5 5.0040	.5071	1	.4764	.0000	.0283
Adjuste	d effects						
Variabl	e l	3 S.E.	Wald	df	Sig	R	Exp(B)
AXN			8.3957	5	.1357	.0000	
1	052	.0505	1.1003	1	.2942	.0000	.9484
2	3018	.1310	5.3118	1	.0212	0123	.7395
3	349	5.2005	3.0379	1	.0813	0069	.7051
4	2493	.6224	.1605	1	.6887	.0000	.7793
5	-2.647	5 13.4994	.0385	1	.8445	.0000	.0708

Resits at A-levels or Scottish Highers{tc ''Resits at A-levels or Scottish Highers'' \l 3}

An indicator was calculated which showed whether there was any evidence that a candidate had retaken either A-levels or Scottish Highers, in which case they were given a score of 2, and otherwise given a score of 1. The distributions of the variables are:

ARES	Resits	in A-levels (ex	GS)			
					Valid	Cum
Value	Label	Value	Frequency	Percent	Percent	Percent
		.00	14339	75.7	88.0	88.0
		1.00	720	3.8	4.4	92.4
		2.00	771	4.1	4.7	97.2
		3.00	398	2.1	2.4	99.6
		4.00	40	.2	.2	99.9
		5.00	17	.1	.1	100.0
		6.00	4	.0	.0	100.0
		8.00	1	.0	.0	100.0
		9.00	1	.0	.0	100.0
			2652	14.0	Missing	
		Total	18943	100.0	100.0	
SHRES	Resits	in Highers (ex (GS)			
					Valid	Cum
Value	Label	Value	Frequency	Percent	Percent	Percent
		.00	1354	7.1	95.8	95.8
		1.00	32	.2	2.3	98.1
		2.00	14	.1	1.0	99.1
		3.00	6	.0	.4	99.5
		4.00	5	.0	.4	99.9
		5.00	2	.0	.1	100.0
			17530	92.5	Missing	
		Total	18943	100.0	100.0	
RESITS	6 Resits	taken in A, AS or	r Highers			
					Valid	Cum
No res	sists	1.00	16892	89.2	89.2	89.2
Resits	s taken	2.00	2051	10.8	10.8	100.0
		Total	18943	100.0	100.0	

No detailed analysis was carried out to assess non-linearity on numbers of resits. The unadjusted and adjusted effects are however shown below. Adjustment has little effect on the effect, and candidates taking resits do less overall.

Simple (u	nadjusted) e	effect					
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
RESITS	9134	.0480	362.6081	1	.0000	1186	.4012
Adjusted	effect						
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
RESITS	9392	.0685	188.1605	1	.0000	0852	.3909

Two variables were calculated, GSTAKEN indicating that general studies A-level had been taken, and GSGRADE1 indicating the grade obtained. The distributions are shown below.

GSTAKEN	General	studies	taken				
						Valid	Cum
GS not tal	ken		.00	14214	75.0	75.0	75.0
GS taken			1.00	4729	25.0	25.0	100.0
			Total	18943	100.0	100.0	
GSGRADE1	General	Studies	grade				
						Valid	Cum
Value Labe	el		Value	Frequency	Percent	Percent	Percent
Value Labe E	el		Value 1.00	Frequency 219	Percent 1.2	Percent 1.2	Percent 1.2
Value Labe E D	el		Value 1.00 2.00	Frequency 219 482	Percent 1.2 2.5	Percent 1.2 2.5	Percent 1.2 3.7
Value Labe E D C	el		Value 1.00 2.00 3.00	Frequency 219 482 893	Percent 1.2 2.5 4.7	Percent 1.2 2.5 4.7	Percent 1.2 3.7 8.4
Value Labe E D C Missing	el		Value 1.00 2.00 3.00 3.84	Frequency 219 482 893 14214	Percent 1.2 2.5 4.7 75.0	Percent 1.2 2.5 4.7 75.0	Percent 1.2 3.7 8.4 83.5
Value Labe E D C Missing B	el		Value 1.00 2.00 3.00 3.84 4.00	Frequency 219 482 893 14214 1373	Percent 1.2 2.5 4.7 75.0 7.2	Percent 1.2 2.5 4.7 75.0 7.2	Percent 1.2 3.7 8.4 83.5 90.7
Value Labe E D C Missing B A	el		Value 1.00 2.00 3.00 3.84 4.00 5.00	Frequency 219 482 893 14214 1373 1762	Percent 1.2 2.5 4.7 75.0 7.2 9.3	Percent 1.2 2.5 4.7 75.0 7.2 9.3	Percent 1.2 3.7 8.4 83.5 90.7 100.0
Value Labe E D C Missing B A	el		Value 1.00 2.00 3.00 3.84 4.00 5.00	Frequency 219 482 893 14214 1373 1762	Percent 1.2 2.5 4.7 75.0 7.2 9.3 	Percent 1.2 2.5 4.7 75.0 7.2 9.3 	Percent 1.2 3.7 8.4 83.5 90.7 100.0

Note: The value of 3.84 is the mean substituted for those not taking General Studies A-level.

Below are shown the unadjusted and effects effect of taking a General Studies A-level. The effect is much diminished in the adjusted analysis, suggesting that overall better qualified candidates tend to take General Studies A-level.

Unadjusted	(simple) eff	lect					
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
GSTAKEN	.6143	.0358	293.7607	1	.0000	.1066	1.8484
Adjusted ef	fect						
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
GSTAKEN	.2054	.0440	21.8045	1	.0000	.0278	1.2280

The effects of the grade gained in General Studies A-level are shown below in the unadjusted and adjusted analyses. In both analyses students gaining A grades do better than those gaining E grades, the effect is approximately linear, although somewhat reduced in size in the adjusted analysis, presumably because candidates getting higher grades also have gained higher grades in their other A-levels.

Simple (unadjusted) e	effect	of GSGF	RADE1 :	relati	ve to	Missing	group	
Variable	1	В	S.E.	Wa	ald	df	Sig	R	Exp(B)
GSGRADE1				621.49	983	5	.0000	.1544	
E	78	875	.1417	30.8	721	1	.0000	0335	.4550
D	2	734	.0927	8.69	994	1	.0032	0162	.7608
С	.10	078	.0699	2.3	798	1	.1229	.0038	1.1138
В	. 69	985	.0620	126.73	326	1	.0000	.0697	2.0107
A	1.45	509	.0673	464.6	562	1	.0000	.1343	4.2668
Adjusted	effect of G	SGRADE1							
Variable	1	В	S.E.	Wa	ald	df	Sig	R	Exp(B)
GSGRADE1				57.60	061	5	.0000	.0431	
E	28	817	.1680	2.83	100	1	.0937	0056	.7545
D	01	751	.1084	.4	795	1	.4886	.0000	.9277
С	06	643	.0811	.62	281	1	.4280	.0000	.9378
В	.19	903	.0714	7.10	015	1	.0077	.0141	1.2096
А	.52	121	.0749	46.69	942	1	.0000	.0417	1.6687

Number of AS-levels{tc "Number of AS-levels" \l 3}

The table below shows the number of AS-levels recorded as having been taken.

ASN	Number	of AS-levels (ex	GS)			
					Valid	Cum
Value	Label	Value	Frequency	Percent	Percent	Percent
		.00	13255	70.0	70.0	70.0
		.21	2652	14.0	14.0	84.0
		1.00	2658	14.0	14.0	98.0
		2.00	329	1.7	1.7	99.7
		3.00	42	.2	.2	100.0
		4.00	б	.0	.0	100.0
		5.00	1	.0	.0	100.0
		Total	18943	100.0	100.0	

Note: The value of 0.21 is the mean substituted for those for whom no information is available.

There are relatively few applicants with more than one AS-level, so that non-linearity is little of a problem, particularly since, as shown below, the main effect of ASN is much reduced when the other background variables are taken into account.

Simple	effect	of r	umber	of AS	3-1	levels	(re	lative	to m	issi	ng)			
Variabl	e		В	S.E	1.	Wa	ld	df		Sig		R	E	xp(B)
ASN						273.06	80	6	.0	000		1009		
0		.50	19	.042	27	137.87	24	1	.0	000		0728	1	.6518
1		.92	99	.057	2	264.10	21	1	.0	000		1011	2	.5343
2		.68	32	.121	.0	31.89	90	1	.0	000		0341	1	.9802
3		.22	37	.311	.4	.51	60	1	.4	725		0000	1	.2507
4		.82	214	.866	59	.89	79	1	.3	434		0000	2	.2737
5		-3.00	70	5.004	1	.36	11	1	.5	479		0000		.0494
Adjuste	d effed	ct of	numbe	er of	AS	S-level:	s							
Variabl	e		В	S.E	1.	Wa	ld	df		Sig		R	E	xp(B)
ASN						7.40	17	6	.2	853		0000		
0		.05	86	.057	'4	1.04	29	1	.3	072		0000	1	.0604
1		.17	30	.073	37	5.50	85	1	.0	189		0117	1	.1889
2		.07	43	.149	94	.24	75	1	.6	189		0000	1	.0772
3		32	260	.386	51	.71	27	1	.3	985		0000		.7218
4		33	801	.978	87	.11	37	1	.7	359		0000		.7189
5	-	-4.07	07 1	L3.499	94	.09	09	1	.7	630		0000		.0171

Date of Application {tc ''Date of Application'' \l 3}

The table below shows the proportion of applicants who apply by 15^{th} October, 15^{th} November, and 15^{th} December.

APPDATE1 Date app-n put on UCAS computer (4 group

		T	- <u>-</u> (J 1		
					Valid	Cum
Value 2	Label	Value	Frequency	Percent	Percent	Percent
By 15 (Oct	1.00	4329	22.9	22.9	22.9
By 15 1	Nov	2.00	8880	46.9	46.9	69.7
By 15	Dec	3.00	5374	28.4	28.4	98.1
Late		4.00	360	1.9	1.9	100.0
		Total	18943	100.0	100.0	

The unadjusted and adjusted effects of date of application (below) show that there is a monotonic trend across date of application, which is to a first approximation linear across the four groups.

th Oct'							
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
APPDATE1			1856.648	3	.0000	.2686	
By 15 Nov	8137	.0437	347.2691	1	.0000	1160	.4432
By 15 Dec	-1.8301	.0470	1517.184	1	.0000	2430	.1604
Late	-3.8945	.2055	359.2559	1	.0000	1180	.0204
Adjusted effect	s						
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
APPDATE1			375.9285	3	.0000	.1201	
By 15 Nov	4969	.0497	99.8705	1	.0000	0618	.6084
By 15 Dec	9218	.0568	263.6785	1	.0000	1010	.3978
Late	-2.8879	.2190	173.9356	1	.0000	0819	.0557

Previous application{tc ''Previous application'' \l 3}

A simple binary variable was calculated to record whether a candidate has made any application in the two previous years (based on UCAS identifying them as having the same sex, date of birth and postcode). There was no need to assess the linearity of this binary measure. The frequency distribution was as follows:

PREVAPP	Application	in previous	two years			
					Valid	Cum
Value Label		Value	Frequency	Percent	Percent	Percent
No previou	ıs app-n	.00	16648	87.9	87.9	87.9
Previous app-n		1.00	2295	12.1	12.1	100.0
		Total	18943	100.0	100.0	

The tables below show the unadjusted and adjusted effects of a previous application to study medicine. Although the effect is highly significant on its own, adjustment for other background measures makes it non-significant overall, presumably because applicants applying previously tend to be less well qualified than other applicants.

Simple (u	unadjusted) (effect of p	previous	applica	ation.		
Variable	В	S.E.	Wald	. df	Sig	R	Exp(B)
PREVAPP	4787	.0447	114.8407	1	.0000	0663	.6196
Adjusted	effect						
Variable	В	S.E.	Wald	. df	Sig	R	Exp(B)
PREVAPP	0258	.0642	.1619	1	.6874	.0000	.9745

Number of medical and non-medical applications{tc ''Number of medical and non-medical applications'' \l 3}

The handling of the number of medical (MEDAPP) and non-medical (NMEDAPP) applications on the UCAS form is complicated, and has evolved during the course of this analysis (and in previous studies ^{10, 12, 13} it has been looked at simply as the number of medical and non-medical applications which have both been entered as covariates into the analysis). However the table below shows the number of applicants making various numbers of medical and non-medical applications. Note that it is possible to have six non-medical applications, and no medical applications since the data set includes applicants who applied originally for medicine, or who changed an application to medicine. The present analyses are all restricted to original applications only.

		Medical applications (MEDAPP)						
		0	1	2	3	4	5	6
	0			60	112	301	10723	1000
su's	1			7	12	103	4910	
pplic (PP)	2			11	30	1047		
d. Aj EDA	3			17	359			
-me	4		1	247				
Non	5							
	6	3						

UCAS allows applicants to make six university choices and it might therefore be thought that MEDAPP and NMEDAPP would be linearly related, always summing to six; and likewise the collinearity would mean that when both are entered into an analysis then *neither* would be significant after taking the effect of the other into account. In fact that does not occur; the reason is seen in the complex distribution shown in the table above, where the modal combination is 5+0 (i.e. 5 medical choices and 0 non-medical; light shading in the table). The reason for this apparently non-rational combination is the statement in the UCAS handbook which says that the Council of Deans of Medical Schools recommends that no more than five applications should be for medicine, and that the remaining choice can be used for a non-medical ('insurance'*) choice without prejudice to an applicant's apparent commitment to medicine. Clearly a majority of applicants do not believe that statement or they presumably would include a non-medical ('insurance') choice, but only 26% use the recommended 5+1 combination (italics in table), 57% preferring the 5+0 combination which apparently reduces their likelihood of an eventual university place.

For purposes of this analysis the combinations shown in the table above are divided into three, resulting in three binary variables, called INSURNCE (Insurance choice), LE4MED (Four or less choices for medicine) and MEDAPP6 (Six medical school applications); together these partition the important variance found in the combinations of medical and non-medical applications. Numbers of each of the variables are as follows:

^{*} Note that the term 'Insurance choice' has another specific meaning within the UCAS scheme, and refers to the second offer that a candidate may hold in addition to a firm offer. However many applicants and selectors refer to a single non-medical application as an 'insurance' choice, and the term is used here also, albeit in quotes after non-medical choice.

INSURNCE

				Valid	Cum
Value Label	Value .00 1.00	Frequency 14033 4910	Percent 74.1 25.9	Percent 74.1 25.9	Percent 74.1 100.0
	Total	18943	100.0	100.0	
LE4MED				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
	.00 1.00	16633 2310	87.8 12.2	87.8 12.2	87.8 100.0
	Total	18943	100.0	100.0	
MEDAPP6					
				Valid	Cum
Value Label	Value .00 1.00	Frequency 17943 1000	Percent 94.7 5.3	Percent 94.7 5.3	Percent 94.7 100.0
	Total	18943	100.0	100.0	

The tables below show the unadjusted and adjusted effects of each of the measures. For an insurance choice, adjustment reverses the direct effect, making it much more significant, presumably because less good candidates tend to make an insurance choice.

Simple (u	unadjusted) effec	t of n	making an	insuran	ce choice		
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
INSURNCE	.0659	.0338	3.7972	1	.0513	.0084	1.0681
Adjusted	effect of making	g an ir	nsurance d	choice			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
INSURNCE	1857	.0439	17.9057	1	.0000 -	0249	.8305

Applicants making four or less choices tend to do less well, but the effect is little affected by adjustment for other background variables, suggesting that candidates making less than five medical applications are not less well qualified, and presumably do so for their own reasons.

Simple (u	unadjusted) e	ffect of	making four	r or les	s appli	cations	for medici	ne
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)	
LE4MED	8617	.0453	361.6035	1	.0000	1184	.4225	
Adjusted	effect of ma	king four	or less ap	plicati	ons for	medicir	ne	
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)	
LE4MED	7067	.0574	151.4535	1	.0000	0763	.4933	

The effect of making all six choices for medicine is very negative in the unadjusted analysis, but is reduced to non-significance by adjustment for the core background variables.

Simple (u	unadjusted) effec	t of	making all	six d	choices for	medici	ne
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
MEDAPP6	5382	.0652	68.1100	1	.0000	0508	.5838
Adjusted	effect of making	g all	six choices	for	medicine		
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
MEDAPP6	0952	.0830	1.3145	1	.2516	.0000	.9092

Sex of applicant{tc ''Sex of applicant'' \l 3}

A small majority of applicants was female, as shown in the table below:.

SEX1

				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
Male	1.00	9218	48.7	48.7	48.7
Female	2.00	9725	51.3	51.3	100.0
	Total	18943	100.0	100.0	

The table below shows the unadjusted and adjusted effects of sex. Overall, female applicants are significantly more likely to receive offers, and the effect is not removed by adjustment for all other background variables.

Simple (u	nadjusted) effec	t of a	sex				
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SEX1	.4041	.0297	185.3326	1	.0000	.0845	1.4980
Adjusted	effect of sex.						
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SEX1	.4336	.0361	144.5989	1	.0000	.0746	1.5428

Age of applicant{tc ''Age of applicant'' \l 3}

Analyses usually consider primarily whether applicants are 'mature' or not, with mature being defined as aged 21 or over at the time of entry to medical school (i.e. in comparison with typical applicant who enters medical school at the age of 18). Here we look firstly at the overall distribution of ages of applicants, and then consider the proportions of them who receive offers. For convenience the ages are grouped as follows:

AGEGP

TIOHOL						
					Valid	Cum
Value Labe	el	Value	Frequency	Percent	Percent	Percent
		16.00	35	.2	.2	.2
		17.00	768	4.1	4.1	4.2
		18.00	10805	57.0	57.0	61.3
		19.00	3609	19.1	19.1	80.3
		20.00	775	4.1	4.1	84.4
		21.00	487	2.6	2.6	87.0
		22.00	532	2.8	2.8	89.8
		23.00	391	2.1	2.1	91.9
		24.00	270	1.4	1.4	93.3
		25.00	313	1.7	1.7	94.9
26-29		26.00	668	3.5	3.5	98.5
30-39		30.00	260	1.4	1.4	99.8
40-98		40.00	30	.2	.2	100.0
		Total	18943	100.0	100.0	

The proportion of candidates in each age group who are made offers is shown below. The oldest candidate to receive an offer was aged 39. (NB: Standard errors and confidence intervals only approximate as calculated by ONEWAY program in SPSS).

			Standard	Standard			
Group	Count	p(offer) Deviation	Error	95 Pct C	onf I	nt for Mean
16	35	.2286	.4260	.0720	.0822	то	.3749
17	768	.8047	.3967	.0143	.7766	то	.8328
18	10805	.6929	.4613	.0044	.6842	то	.7016
19	3609	.5569	.4968	.0083	.5407	то	.5732
20	775	.3587	.4799	.0172	.3249	то	.3926
21	487	.3018	.4595	.0208	.2609	TO	.3428
22	532	.2650	.4418	.0192	.2274	TO	.3027
23	391	.2941	.4562	.0231	.2488	TO	.3395
24	270	.2889	.4541	.0276	.2345	TO	.3433
25	313	.2492	.4332	.0245	.2010	TO	.2974
26-29	668	.2425	.4289	.0166	.2099	TO	.2751
30-39	260	.1538	.3615	.0224	.1097	TO	.1980
40-98	30	.0000	.0000	.0000	.0000	TO	.0000

Regression analysis suggested it was not entirely clear, even in the adjusted analysis, that there was a clear break at age of 21, 20 year olds showing some disadvantage. Nevertheless, there are strong practical reasons for using the standard criterion for mature applicants. It can also been seen that over the age of 21 all candidates are clearly disadvantaged equally relative to 18 year olds, at least until one gets into the thirties.

Simple effect	(unadjusted) of ag	ge, relative	to	18 year	olds.	
Variable	В	S.E.	Wald	df	Sig	ſ R	Exp(B)
AGEGP			1905.491	12	.0000	.2708	
<=16	-2.0302	.4031	25.3687	1	.0000	0302	.1313
17	.6020	.0934	41.5640	1	.0000	.0393	1.8258
19	5850	.0395	219.7144	1	.0000	0921	.5571
20	-1.3948	.0777	321.8647	1	.0000	1117	.2479
21	-1.6523	.1009	268.2187	1	.0000	1019	.1916
22	-1.8338	.1004	333.4411	1	.0000	1137	.1598
23	-1.6893	.1129	223.7491	1	.0000	0930	.1847
24	-1.7146	.1359	159.2212	1	.0000	0783	.1800
25	-1.9167	.1323	209.7947	1	.0000	0900	.1471
26-29	-1.9527	.0927	444.2195	1	.0000	1313	.1419
30-39	-2.5182	.1731	211.5679	1	.0000	0904	.0806
40+	-4.9926	1.4980	11.1085	1	.0009	0188	.0068
Adjusted effec	ct of age						
Variable	В	S.E.	Wald	df	Sig	r R	Exp(B)
AGEGP			660.7479	12	.0000	.1575	
<=16	-1.3960	.4236	10.8601	1	.0010	0186	.2476
17	.9122	.1035	77.6116	1	.0000	.0543	2.4899
19	3784	.0529	51.2312	1	.0000	0438	.6849
20	9823	.0977	101.0573	1	.0000	0621	.3745
21	-1.0483	.1146	83.6248	1	.0000	0564	.3505
22	-1.1545	.1150	100.8452	1	.0000	0621	.3152
23	9726	.1296	56.3612	1	.0000	0460	.3781
24	-1.1015	.1542	51.0278	1	.0000	0437	.3324
25	-1.3678	.1477	85.7776	1	.0000	0571	.2547
26-29	-1.4436	.1050	188.8480	1	.0000	0853	.2361
30-39	-2.0425	.1882	117.7666	1	.0000	0672	.1297
40+	-5.2672	2.3116	5.1918	1	.0227	0112	.0052

Social Class{tc ''Social Class'' \l 3}

The UCAS data base records social class on a six point scale, I, II, III IV and V, with III divided into IIIM and IIIN (skilled manual and skilled non-manual). Most sociological analysis tends to use the five-point scale. Here unadjusted and adjusted effects of each are given, and it will be seen that they are almost identical. The five-point scale does however look closer to linear and hence will be used. The frequency counts of the two scales are as follows:

SOCIAL1 Social class (6	point sc	ale)			
				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
I	1.00	6607	34.9	34.9	34.9
II	2.00	7010	37.0	37.0	71.9
Missing (mean sub)	2.09	1079	5.7	5.7	77.6
IIIN	3.00	1601	8.5	8.5	86.0
IIIM	4.00	1545	8.2	8.2	94.2
IV	5.00	902	4.8	4.8	98.9
V	6.00	199	1.1	1.1	100.0
	Total	18943	100.0	100.0	
SOCIAL2 Social class (5	point sc	ale)			
				Valid	Cum
Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
Value Label I	Value	Frequency 6607	Percent 34.9	Valid Percent 34.9	Cum Percent 34.9
Value Label I Missing (mean sub)	Value 1.00 1.94	Frequency 6607 1079	Percent 34.9 5.7	Valid Percent 34.9 5.7	Cum Percent 34.9 40.6
Value Label I Missing (mean sub) II	Value 1.00 1.94 2.00	Frequency 6607 1079 7010	Percent 34.9 5.7 37.0	Valid Percent 34.9 5.7 37.0	Cum Percent 34.9 40.6 77.6
Value Label I Missing (mean sub) II III	Value 1.00 1.94 2.00 3.00	Frequency 6607 1079 7010 3146	Percent 34.9 5.7 37.0 16.6	Valid Percent 34.9 5.7 37.0 16.6	Cum Percent 34.9 40.6 77.6 94.2
Value Label I Missing (mean sub) II III IV	Value 1.00 1.94 2.00 3.00 4.00	Frequency 6607 1079 7010 3146 902	Percent 34.9 5.7 37.0 16.6 4.8	Valid Percent 34.9 5.7 37.0 16.6 4.8	Cum Percent 34.9 40.6 77.6 94.2 98.9
Value Label I Missing (mean sub) II III IV V	Value 1.00 1.94 2.00 3.00 4.00 5.00	Frequency 6607 1079 7010 3146 902 199	Percent 34.9 5.7 37.0 16.6 4.8 1.1	Valid Percent 34.9 5.7 37.0 16.6 4.8 1.1	Cum Percent 34.9 40.6 77.6 94.2 98.9 100.0
Value Label I Missing (mean sub) II III IV V	Value 1.00 1.94 2.00 3.00 4.00 5.00	Frequency 6607 1079 7010 3146 902 199 	Percent 34.9 5.7 37.0 16.6 4.8 1.1 	Valid Percent 34.9 5.7 37.0 16.6 4.8 1.1	Cum Percent 34.9 40.6 77.6 94.2 98.9 100.0

Regression analyses are presented below for each scale. Although there is little in it, the five point scale is marginally more linear (and in analyses not reported here, its linear component accounts for slightly more variance than the six point scale, albeit not significantly). The five point scale is therefore used in the analyses.

Six point	social class	scale (una	adjusted),	relati	ve to mis	sing gro	oup.
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SOCIAL1			400.4364	б	.0000	.1231	
I	1.0798	.0678	253.8163	1	.0000	.0991	2.9440
II	.9513	.0673	199.5273	1	.0000	.0877	2.5890
IIIN	.7243	.0804	81.1220	1	.0000	.0555	2.0633
IIIM	.5583	.0808	47.7556	1	.0000	.0422	1.7476
IV	.4231	.0915	21.3764	1	.0000	.0275	1.5266
V	0779	.1603	.2360	1	.6271	.0000	.9251
Five point	social class	s scale (ur	nadjusted)	, relat	ive to mi	ssing g	roup.
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SOCIAL2			395.0305	5	.0000	.1225	
I	1.0798	.0678	253.8163	1	.0000	.0991	2.9440
II	.9513	.0673	199.5273	1	.0000	.0877	2.5890
III	.6425	.0722	79.1897	1	.0000	.0549	1.9012
IV	.4231	.0915	21.3764	1	.0000	.0275	1.5266
V	0779	.1603	.2360	1	.6271	.0000	.9251

Six point	social class	scale (ad	usted)				
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SOCIAL1			43.6222	6	.0000	.0351	
I	.3247	.0824	15.5337	1	.0001	.0230	1.3836
II	.1641	.0818	4.0215	1	.0449	.0089	1.1784
IIIN	.1375	.0968	2.0180	1	.1554	.0008	1.1474
IIIM	.0571	.0975	.3425	1	.5584	.0000	1.0587
IV	0391	.1099	.1266	1	.7219	.0000	.9616
V	1902	.1866	1.0390	1	.3080	.0000	.8268
Five point	social class	s scale (ad	ljusted)				
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SOCIAL2			42.7221	5	.0000	.0357	
I	.3246	.0824	15.5213	1	.0001	.0230	1.3835
II	.1642	.0819	4.0258	1	.0448	.0089	1.1785
III	.0981	.0873	1.2627	1	.2611	.0000	1.1031
IV	0389	.1099	.1250	1	.7237	.0000	.9619
V	1899	.1866	1.0356	1	.3088	.0000	.8270

Ethnic origin{tc ''Ethnic origin'' \l 3}

One of the major interests of this study is in ethnic origin. The UCAS main classification provides ten main categories (plus 'unknown' which is equivalent to not answered). Appendix 7 provides a comparison of the proportion of applicants in each of the ethnic groups with data for UCAS as a whole and for the population as a whole derived from the 1991 Census. From the ten main categories can be derived four major groups (White, Black, Asian, Other, plus Unknown), and these can be reduced to two major groups (White and non-White, plus Unknown, scored as the mean). Although the latter is the most convenient from the point of view of statistical analysis, it is necessary to demonstrate that no important variance has been lost by reducing 10 categories to two.

ETHNIC1 Ethnic group (10 categories + unknown)

Percent 62.8 63 3
62.8 63 3
63 3
55.5
66.1
66.5
78.1
84.7
86.5
88.5
93.7
96.9
100.0

ETHNIC2 Ethnic group White/Black/Asian/Other/Unk

DIIMICZ DEIMITE GLOUP	MILLCC/ DIGCI		T / OIII		
				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
White	1.00	11905	62.8	62.8	62.8
Black	2.00	696	3.7	3.7	66.5
Asian	3.00	5145	27.2	27.2	93.7
Other	4.00	608	3.2	3.2	96.9
Unknown	5.00	589	3.1	3.1	100.0
	Total	18943	100.0	100.0	

ETHNIC3 Ethnic group White/non-White (Unknown m Valid Cum Value Label Value Frequency Percent Percent Percent 1.00 62.8 11905 62.8 White 62.8 1.35 Missing (scored as mean) 589 3.1 66.0 3.1 Non-white 2.00 6449 34.0 34.0 100.0 _ _ _ _ _ _ _ _ _ Total 18943 100.0 100.0

Regression analyses are presented below for the unadjusted and adjusted effects of the 10 point scale (relative to White). It can be seen that although there are large differences between ethnic groups in the unadjusted analysis, these are much reduced in the adjusted analysis, reflecting the fact that ethnic groups differ in the other background variables. The similarity of the various groups, relative to White, from which they are all very different, justifies the use in the first instance of a straightforward comparison of white applicants with non-white applicants.

Ethnic origin	(unad Justed) relativ	VE LO WIIIL	e			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
ETHNIC1			1207.032	10	.0000	.2151	
Black Carib	-1.5998	.2309	48.0192	1	.0000	0424	.2019
Black African	-1.8082	.1018	315.2721	1	.0000	1105	.1640
Black Other	-1.5374	.2375	41.9151	1	.0000	0394	.2149
Indian	6695	.0470	202.6976	1	.0000	0884	.5120
Pakistani	-1.3644	.0626	474.5191	1	.0000	1357	.2555
Bangladeshi	-1.1725	.1121	109.3751	1	.0000	0647	.3096
Chinese	7321	.1029	50.5995	1	.0000	0435	.4809
Other Asian	8736	.0671	169.4767	1	.0000	0808	.4174
Other	9173	.0837	120.0427	1	.0000	0678	.3996
Unknown	-1.1835	.0866	186.8102	1	.0000	0849	.3062
Ethnic origin	adjusted, r	elative t	to White				
Variable		-					
	В	S.E.	Wald	df	Sig	R	Exp(B)
ETHNIC1	В	S.E.	Wald 791.4004	df 10	Sig .0000	R .1734	Exp(B)
ETHNIC1 Black Carib	B 8854	S.E. .2726	Wald 791.4004 10.5499	df 10 1	Sig .0000 .0012	R .1734 0183	Exp(B) .4125
ETHNIC1 Black Carib Black Africa	B 8854 n -1.3352	S.E. .2726 .1186	Wald 791.4004 10.5499 126.6671	df 10 1 1	Sig .0000 .0012 .0000	R .1734 0183 0697	Exp(B) .4125 .2631
ETHNIC1 Black Carib Black Africa Black Other	B 8854 n -1.3352 -1.3821	S.E. .2726 .1186 .2717	Wald 791.4004 10.5499 126.6671 25.8738	df 10 1 1	Sig .0000 .0012 .0000 .0000	R .1734 0183 0697 0305	Exp(B) .4125 .2631 .2510
ETHNIC1 Black Carib Black Africa Black Other Indian	B 8854 n -1.3352 -1.3821 9819	S.E. .2726 .1186 .2717 .0576	Wald 791.4004 10.5499 126.6671 25.8738 290.8053	df 10 1 1 1	Sig .0000 .0012 .0000 .0000 .0000	R .1734 0183 0697 0305 1061	Exp(B) .4125 .2631 .2510 .3746
ETHNIC1 Black Carib Black Africa Black Other Indian Pakistani	B 8854 n -1.3352 -1.3821 9819 -1.1882	S.E. .2726 .1186 .2717 .0576 .0742	Wald 791.4004 10.5499 126.6671 25.8738 290.8053 256.5153	df 10 1 1 1 1	Sig .0000 .0012 .0000 .0000 .0000 .0000	R .1734 0183 0697 0305 1061 0996	Exp(B) .4125 .2631 .2510 .3746 .3048
ETHNIC1 Black Carib Black Africa Black Other Indian Pakistani Bangladeshi	B 8854 n -1.3352 -1.3821 9819 -1.1882 -1.2229	S.E. .2726 .1186 .2717 .0576 .0742 .1326	Wald 791.4004 10.5499 126.6671 25.8738 290.8053 256.5153 85.0776	df 10 1 1 1 1 1 1	Sig .0000 .0012 .0000 .0000 .0000 .0000 .0000	R .1734 0183 0697 0305 1061 0996 0569	Exp(B) .4125 .2631 .2510 .3746 .3048 .2944
ETHNIC1 Black Carib Black Africa Black Other Indian Pakistani Bangladeshi Chinese	B 8854 n -1.3352 -1.3821 9819 -1.1882 -1.2229 -1.1771	S.E. .2726 .1186 .2717 .0576 .0742 .1326 .1216	Wald 791.4004 10.5499 126.6671 25.8738 290.8053 256.5153 85.0776 93.6665	df 10 1 1 1 1 1 1	Sig .0000 .0012 .0000 .0000 .0000 .0000 .0000	R .1734 0183 0697 0305 1061 0996 0569 0598	Exp(B) .4125 .2631 .2510 .3746 .3048 .2944 .3082
ETHNIC1 Black Carib Black Africa Black Other Indian Pakistani Bangladeshi Chinese Other Asian	B 8854 n -1.3352 -1.3821 9819 -1.1882 -1.2229 -1.1771 -1.0920	S.E. .2726 .1186 .2717 .0576 .0742 .1326 .1216 .0802	Wald 791.4004 10.5499 126.6671 25.8738 290.8053 256.5153 85.0776 93.6665 185.3603	df 10 1 1 1 1 1 1 1	Sig .0000 .0012 .0000 .0000 .0000 .0000 .0000 .0000	R .1734 0183 0697 0305 1061 0996 0569 0598 0845	Exp(B) .4125 .2631 .2510 .3746 .3048 .2944 .3082 .3355
ETHNIC1 Black Carib Black Africa Black Other Indian Pakistani Bangladeshi Chinese Other Asian Other	B 8854 n -1.3352 -1.3821 9819 -1.1882 -1.2229 -1.1771 -1.0920 9086	S.E. .2726 .1186 .2717 .0576 .0742 .1326 .1216 .0802 .0991	Wald 791.4004 10.5499 126.6671 25.8738 290.8053 256.5153 85.0776 93.6665 185.3603 84.0521	df 10 1 1 1 1 1 1 1 1 1	Sig .0000 .0012 .0000 .0000 .0000 .0000 .0000 .0000 .0000	R .1734 0183 0697 0305 1061 0996 0569 0598 0845 0566	Exp(B) .4125 .2631 .2510 .3746 .3048 .2944 .3082 .3355 .4031

School type{tc ''School type'' \l 3}

UCAS classifies schools into seven categories (shown below)^{*}. For many applicants, particularly those over the age of 18, no indication of type of schooling is available in the current data. A matter of public concern has been whether applicants from Independent schools are especially advantaged relative to other applicants. A second variable was therefore calculated which differentiated applicants known to have applied from an Independent School from all others.

^{*} These data are classified on the basis of a questionnaire distributed by UCAS to schools, in which schools provide a classification of themselves on a multiple-choice question. The questionnaire presently contains 11 categories (A=Sixth Form Centre; B=Sixth Form College; C=Comprehensive School; D=Tertiary College; F=Further Education College; G=Grammar School; H=Higher Education Institute; I=Independent School/College; S=Other Secondary School; T=Technical College; O=Other (please specify)). However the data provided by UCAS specify only eight categories (Comprehensive, FE/HE, Grammar, Independent, Other, Unknown, VIth Form Centre, VIth Form College have been used as given by UCAS except that VIth Form Centre and VIth Form College have been merged. No further information is available from UCAS on which schools put themselves in the 'Other' category.

SCHOOL1 School type (7 categories)

			Valid	Cum
Value	Frequency	Percent	Percent	Percent
1.00	4312	22.8	22.8	22.8
2.00	1974	10.4	10.4	33.2
3.00	2163	11.4	11.4	44.6
4.00	5708	30.1	30.1	74.7
5.00	649	3.4	3.4	78.2
6.00	2241	11.8	11.8	90.0
7.00	1896	10.0	10.0	100.0
Total	18943	100.0	100.0	
(Independent	vs Others)			
(Valid	Cum
Value	Frequency	Percent	Percent	Percent
1.00	13235	69.9	69.9	69.9
2.00	5708	30.1	30.1	100.0
Total	18943	100.0	100.0	
	Value 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Total (Independent Value 1.00 2.00 Total	Value Frequency 1.00 4312 2.00 1974 3.00 2163 4.00 5708 5.00 649 6.00 2241 7.00 1896 Total 18943 (Independent vs Others) Value Frequency 1.00 13235 2.00 5708 Total 18943	Value Frequency Percent 1.00 4312 22.8 2.00 1974 10.4 3.00 2163 11.4 4.00 5708 30.1 5.00 649 3.4 6.00 2241 11.8 7.00 1896 10.0 Total 18943 100.0 13235 69.9 2.00 5708 30.1 Total 18943	Value Frequency Percent Percent 1.00 4312 22.8 22.8 2.00 1974 10.4 10.4 3.00 2163 11.4 11.4 4.00 5708 30.1 30.1 5.00 649 3.4 3.4 6.00 2241 11.8 11.8 7.00 1896 10.0 10.0 Total 18943 100.0 100.0 (Independent vs Others) Valid Valid Value Frequency Percent Percent 1.00 13235 69.9 69.9 2.00 5708 30.1 30.1 Total 18943 100.0

. . .

The regression analyses in the tables below suggest that although applicants from Independent schools do better in the unadjusted analyses, this effect is actually reversed (and non-significant) in the adjusted analysis. The apparent advantage of applicants from Independent Schools is therefore secondary to higher grades and other background characteristics. Groups that *do* seem to be disadvantaged are those in FE/HE and Sixth Form colleges. Those at Grammar Schools appear to have a clear advantage.

School type	(unadjusted)	, relativ	ve to Comp	prehensiv	e		
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SCHOOL1			1820.757	б	.0000	.2655	
FE/HE	-1.3974	.0580	580.1081	1	.0000	1501	.2472
Grammar	.4796	.0591	65.8761	1	.0000	.0499	1.6154
Independent	.2369	.0431	30.1729	1	.0000	.0331	1.2673
Other	8931	.0854	109.2999	1	.0000	0647	.4094
Unknown	-1.3938	.0555	629.9431	1	.0000	1565	.2481
Sixth form	Col2847	.0565	25.3936	1	.0000	0302	.7523
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
School type	(adjusted),	celative	to Compre	ehensive			
SCHOOL1			199.7973	б	.0000	.0856	
FE/HE	7672	.0705	118.5136	1	.0000	0674	.4643
Grammar	.2027	.0678	8.9433	1	.0028	.0165	1.2247
Independent	0567	.0527	1.1553	1	.2825	.0000	.9449
Other	5100	.1009	25.5611	1	.0000	0303	.6005
Unknown	6098	.0810	56.6364	1	.0000	0461	.5435
Sixth Form	Col3003	.0673	19.9142	1	.0000	0264	.7406

The analysis above suggests the first modification thus far in the coding scheme set out at the beginning of this section, with the addition of three measures assessing additional types of school. The four variables coding school are therefore now: INDEPEND, FEHE, GRAMMAR, OTHSCHL.

				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
Not Ind School	.00	13235	69.9	69.9	69.9
Ind School	1.00	5708	30.1	30.1	100.0
	Total	18943	100.0	100.0	
FEHE					-
		_	D	Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
NOU FE/HE	.00	1074	89.6	89.6	89.6
FE/HE	1.00	1974	10.4	10.4	100.0
	Total	18943	100.0	100.0	
GRAMMAR					
				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
Not Grammar	.00	16780	88.6	88.6	88.6
Grammar	1.00	2163	11.4	11.4	100.0
	Total	18943	100.0	100.0	
OTHSCHL					
				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
Not other schl	.00	14157	74.7	74.7	74.7
Other/Unkn/6th Form	1.00	4786	25.3	25.3	100.0
	Total	18943	100.0	100.0	

Local applicants{tc ''Local applicants'' \l 3}

Medical schools are not distributed equally over the whole of the UK. Many applicants prefer to apply to schools which are geographically closer to them. Medical schools may also prefer to select candidates who are closer to them. In an overall analysis the best way of assessing this is to see the extent to which candidates who have put a higher proportion of 'local' schools on their application have a greater likelihood of being selected. The variable PLOCAL is the proportion (between 0 and 1) of the medical schools applied to which are defined as 'local' (see Appendix 8 for definitions). For a more detailed analysis of linearity, a variable PLOCAL2 is calculated which clusters PLOCAL on the typical basis that there are five medical school applications.

PLOCAL2

INDEPEND

				Valid	Cum
Value Label	Value	Frequency	Percent	Percent	Percent
0 (01)	.00	2192	11.6	11.6	11.6
.2 (.13)	2.00	3829	20.2	20.2	31.8
.4 (.35)	4.00	3847	20.3	20.3	52.1
.6 (.57)	6.00	3014	15.9	15.9	68.0
.8 (.79)	8.00	2583	13.6	13.6	81.6
1 (.9 - 1)	10.00	3478	18.4	18.4	100.0
	Total	18943	100.0	100.0	

The regression analyses below suggest that there is no doubt that applicants with no local medical schools are less likely to receive an offer. However the adjusted effect is not linear. It should be remembered that in the analysis of individual medical schools the variable LOCAL simply asks if the applicant is local to *that* medical school, and therefore it is likely to be much better behaved and easier to interpret.

Effect of number	of local	medical	schools	(unadjus	sted), re	el to O.	
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
PLOCAL2			334.0812	5	.0000	.1124	
PLOCAL2(1)	.6180	.0550	126.3981	1	.0000	.0696	1.8552
PLOCAL2(2)	.3279	.0541	36.7882	1	.0000	.0368	1.3880
PLOCAL2(3)	.3459	.0568	37.0453	1	.0000	.0370	1.4132
PLOCAL2(4)	.3135	.0587	28.4879	1	.0000	.0321	1.3683
PLOCAL2(5) -	1950	.0546	12.7435	1	.0004	0205	.8229
Effect of number	of local	schools	(adjuste	d)			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
PLOCAL2			46.7960	5	.0000	.0379	
PLOCAL2(1)	.4123	.0661	38.8691	1	.0000	.0379	1.5103
PLOCAL2(2)	.2057	.0659	9.7547	1	.0018	.0174	1.2284
PLOCAL2(3)	.2618	.0693	14.2666	1	.0002	.0219	1.2992
PLOCAL2(4)	.3791	.0709	28.5826	1	.0000	.0322	1.4610
PLOCAL2(5)	.2834	.0666	18.0907	1	.0000	.0250	1.3277

Gap year (Deferred entry){tc ''Gap year (Deferred entry)'' \l 3}

Information was only available for the 1997 applicants on the intention to take a gap year^{*}. The following analyses are therefore restricted to that year. In the unadjusted analysis, applicants intending to take a gap year are more likely to be accepted. However that does not take into account the fact that such applicants tend to be better qualified than other applicants, and in the adjusted analysis they are significantly *less* likely to be made an offer.

GAPYEAR

Value Label		Valu .(1.(le Freq 00 00	uency 8946 512	Percent 94.6 5.4	Valid Percent 94.6 5.4	Cum Percent 94.6 100.0
		Tota	al	9458	100.0	100.0	
Gap year Variable GAPYEAR	(unadjusted). B .1948	S.E. .0943	Wald 4.2702	l df 2 1	Sig .0388	R .0133	Exp(B) 1.2151
Gap year Variable GAPYEAR	(adjusted). B 3281	S.E. .1115	Wald 8.6539	l df	Sig .0033	R 0228	Exp(B) .7203

^{*} The term 'gap year' is slightly ambiguous. CVCP interprets it as a candidate taking a year out between taking Alevels and entering university. This can however occur in two ways, either by applying pre-A-level in cycle N for entry in year N+2, which UCAS refers to as 'deferred entry', or by taking A-levels, and applying post-A-level in year N+1 for entry in year N+2. UCAS only has information on the former, and that is what is referred to here by the variable 'Deffered enty (gap year)'.

The final overall analysis{tc "The final overall analysis" \l 2}

The first of the two tables below shows the effects of the final set of twenty-one variables used to predict receiving one or more offers at a medical school. The second shows the identical analysis for 1997 only with gap year added in as a variable. The majority of effects are highly significant. Amongst the non-significant variables, attending an Independent School does not predict receipt of an offer, and candidates making previous applications are not disadvantaged. Candidates taking AS-levels are not given any additional benefit for their extra qualifications, and candidates making six applications to medical schools are not disadvantaged, even though they are breaking the explicit recommendations of medical school Deans (and gaining thereby an unfair advantage over candidates choosing to make only the recommended five applications)¹⁶. Amongst the significant effects, female white applicants from higher social classes are significantly advantaged, whereas applicants attending Further or Higher Education, or Sixth Form Colleges seem to be disadvantaged, as do candidates who do not apply to local medical schools, who apply late, make insurance applications, apply to less than five medical schools or applying for a gap year.

All 21 vari	ables, 1996	and 199'	7.					
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)	
AG	.4602	.0129	1265.907	1	.0000	.2220	1.5845	
AN	.1461	.0376	15.1424	1	.0001	.0226	1.1574	
NONSCIA	0782	.0474	2.7220	1	.0990	0053	.9248	
RESITS	8871	.0688	166.0856	1	.0000	0800	.4118	
GSTAKEN	.1686	.0442	14.5444	1	.0001	.0221	1.1837	
GSGRADE1	.2050	.0328	39.0902	1	.0000	.0380	1.2275	
ASN	.0629	.0423	2.2170	1	.1365	.0029	1.0650	
APPDATE1	4971	.0270	338.0432	1	.0000	1145	.6083	
PREVAPP	.0529	.0646	.6712	1	.4126	.0000	1.0544	
INSURNCE	2162	.0444	23.7065	1	.0000	0291	.8055	
LE4MED	7529	.0582	167.3687	1	.0000	0803	.4710	
MEDAPP6	0801	.0833	.9242	1	.3364	.0000	.9230	
SEX1	.4445	.0363	149.9777	1	.0000	.0759	1.5598	
MATURE	8701	.0647	181.0094	1	.0000	0835	.4189	
SOCIAL2	1038	.0203	26.1975	1	.0000	0307	.9014	
ETHNIC3	-1.0472	.0406	665.7899	1	.0000	1609	.3509	
INDEPEND	0573	.0527	1.1808	1	.2772	.0000	.9443	
FEHE	7351	.0700	110.3934	1	.0000	0650	.4795	
GRAMMAR	.2015	.0678	8.8321	1	.0030	.0163	1.2233	
OTHSCHL	4245	.0558	57.7845	1	.0000	0466	.6541	
PLOCAL	.1414	.0558	6.4290	1	.0112	.0131	1.1519	
Constant	3400	.2415	1.9822	1	.1592			
All 21	variables,	plus	Gap Year	c, 1997	applicant	ts only.		
---------	------------	------	----------	---------	-----------	----------	---------	--------
Variabl	e	В	S.E.	Wal	d df	Sig	g R	Exp(B)
AG	. 4	424	.0186	565.896	8 1	.0000	.2099	1.5564
AN	.1	882	.0547	11.838	9 1	.0006	.0277	1.2071
NONSCIA	0°	753	.0651	1.338	0 1	.2474	£ .0000	.9274
RESITS	9	117	.0968	88.777	9 1	.0000)0823	.4018
GSTAKEN	J .1	010	.0610	2.740	6 1	.0978	.0076	1.1063
GSGRADE	.2	206	.0459	23.093	8 1	.0000	.0406	1.2468
ASN	.1	828	.0627	8.496	3 1	.0036	.0225	1.2005
APPDATE	5	115	.0370	190.828	8 1	.0000)1215	.5996
PREVAPE	.0	342	.0922	.137	8 1	.7104	£ .0000	1.0348
INSURNO	CE2	644	.0618	18.332	0 1	.0000)0357	.7677
LE4MED	6	564	.0849	59.822	2 1	.0000)0672	.5187
MEDAPP6	1	199	.1194	1.007	5 1	.3155	5.0000	.8870
SEX1	.4	043	.0511	62.638	3 1	.0000	.0688	1.4982
MATURE	7	087	.0923	58.964	9 1	.0000)0667	.4923
SOCIAL2	0	849	.0285	8.848	6 1	.0029	90231	.9186
ETHNIC3	9	992	.0580	296.910	4 1	.0000)1518	.3682
INDEPEN	1D .04	488	.0737	.438	3 1	.5080	.0000	1.0500
FEHE	7	449	.0994	56.133	9 1	.0000)0650	.4748
GRAMMAF	.1	691	.0918	3.388	1 1	.0657	.0104	1.1842
OTHSCHI	4	903	.0788	38.743	7 1	.0000)0536	.6125
PLOCAL	.1	669	.0799	4.367	7 1	.0366	5.0136	1.1817
GAPYEAF	3	298	.1119	8.681	8 1	.0032	20229	.7191
Constar	nt – 6	672	. 3423	3.799	1 1	.0513	3	

Differences between 1996 and 1997 applicants{tc ''Differences between 1996 and 1997 applicants'' \l 3}

The table below compares means (or proportions) of the various background measures for the years 1996 and 1997. Applicants in 1997 have somewhat higher A-level grades and are more likely to have taken a non-science A-level. There is also a higher proportion taking General Studies, more making an Insurance Choice, fewer making less than five applications for medicine, fewer coming from ethnic minorities, and somewhat fewer making applications to local schools. There is a large difference in date of application: in the 1996 applicants; 17.9% had applied by Oct 15th, compared with 27.8% in the 1997 applicants. The explanation for this is not entirely clear, although it would seem to be a general phenomenon across UCAS that year that applicants applied earlier (see p.35 of the UCAS Annual Report¹¹), without there being a large shift in the total number of applicants (as is also the case for medicine, where the total number of applicants is nearly identical in the two years). It may be related to an anticipated introduction of tuition fees, but that is not entirely clear at present.

	1996 (N=9485)	1997 (N=9458)	Sig
Offer received	58.7%	59.1%	NS
Number of offers received	1.22 (1.32)	1.19 (1.29)	NS
Mean A-level grade	7.94 (1.72)	8.11 (1.68)	p<.0001
Number of A-levels	3.19 (.54)	3.18 (.51)	NS
Non-science A-levels	18.8%	21.2%	p<.0001
Resits	10.9%	10.8%	NS
General Studies taken	24.1%	25.8%	p=.0054
General Studies grade	3.84 (.58)	3.84 (.59)	NS
Number of AS-levels	.22 (.46)	.21 (.43)	p=.040
Application date	2.17 (.73)	2.02 (.78)	p<.0001
Previous application	12.6%	11.6%	p=.033
Insurance choice	24.8%	27.0%	p=.0007
Less than 5 medicine applications	13.3%	11.1%	p<.0001
Six medicine applications	5.5%	5.0%	NS
Female	50.9%	51.8%	NS
Mature	13.2%	12.8%	NS
Social class	1.94 (.90)	1.94 (.89)	NS
Ethnic minority	36.0%	34.3%	p<.0001
Independent school	30.4%	30.2%	NS
FE or HE	11.0%	9.9%	p=.012
Grammar school	10.9%	12.0%	p=.022
Other school	26.0%	24.5%	p=.017
Proportion of local applications	.522 (.323)	.503 (.325)	p<.0001

Comparison of 1996 and 1997 selection processes{tc "Comparison of 1996 and 1997 selection processes" \l 3}

The two tables below show the basic analyses of the twenty-one variables separately for 1996 and 1997 applicants. There is some suggestion that some of the variables show differences in their effects in the two years. A formal comparison is therefore necessary to look at interactions between year and effect.

Interaction terms for *year x effect* were assessed using the SPSS logistic regression program. Firstly a main effects model was fitted with all effects, plus year of application. The effect of year of application was highly significant, not due to there being a difference in the rate of offers between the years, but because applicants in 1997 had somewhat higher A-level grades and therefore might, in a non-competitive system, have been expected to receive somewhat more offers, whereas they in fact received exactly the same proportion, making it look as if application was more difficult in 1997 than 1996^* .

After the main effects model was fitted, all possible interaction terms were tested using a forward stepwise entry. Although in general somewhat overly liberal, this was computationally a more robust procedure. Since 21 interaction terms were being fitted, a Bonferroni adjusted significance level was required in the forward entry analysis, with a critical nominal P value of 0.00238 (i.e. 0.05/21). Using this procedure the most significant interaction term was the *Year x Independent school* interaction, which had a nominal significance level of .0037, which does not reach the

^{*} It should be remembered that medical student selection is a good example of what is necessarily a 'normreferenced' process. The number of entrants is fixed each year because of intake targets fixed by the Government and the intention is to fill each school. The fact that in a later year there may be an excess of candidates who are better qualified than in an earlier year can have no impact on that earlier year.

critical Bonferroni adjusted level, and hence it can be concluded that overall there are no significant differences in the process of selection between the two years.

Variable B S.E. Wald df Sig R EXP(B) AG .4916 .0183<720.9885 1 .0000 .2365 1.6349 AN .0925 .0521 3.1506 1 .0759 .0095 1.6349 AN .0925 .0521 3.1506 1 .0759 .0095 1.6349 CNNSCIA .0564 .0695 .6587 1 .1000 .0000 .4227 GSCRADE1 .1840 .0471 15.2380 .0001 .0321 1.2020 ASN 0521 .0580 .8076 1 .3688 .0000 .9492 INSURNCE 1539 .0645 5.6910 1 .0171 .0169 .8573 LEAMED 8711 .089115.7987 1 .0000 .0381 1.6414 MATURE 0267 .0915 125.9793 1 .0000 .3582 SOCIAL2 11026 .0577 384.1919 <	1996 applica	ants only						
AG .4916 .0183 720.9885 1 .0000 .2365 1.6349 AN .0925 .0521 .31506 1 .4170 .0000 .9452 RESITS 8611 .0986 76.2421 .0000 .0759 .0295 .1.2735 GSGRADE1 .1840 .0471 15.2380 1 .0001 .0321 1.2020 ASN .0521 .0580 .8076 1 .3688 .0000 .9492 APPDATE1 .5119 .0402 152.5016 1 .0000 .0171 .0169 INSURNCE .1539 .0645 5.6910 1 .0171 .0169 .8573 LE4MED .8711 .0809 115.7987 .0000 .0381 1.6414 MATURE .1.214 .0200 .7.5654 .0000 .0381 1.6414 MATURE .1.302 .0573 384.1919 .0000 .0348 .8857 ETHINC3 .1.302 .05	Variable	B	S.E.	Wald	df	Sig	R	Exp(B)
AG .4916 .0183 720.9885 1 .0000 .2365 1.6349 AN .0925 .0521 3.1506 1 .0759 .0095 1.0969 NONSCIA .0564 .0695 .6587 1 .4170 .0000 .9452 RESITS .8611 .0986 76.2421 1 .0000 .0321 1.2203 GSGRADE1 .1840 .0471 15.2380 1 .0001 .0321 1.2202 ANN 0521 .0580 .8076 1 .3688 .0000 .9492 APPDATE1 5119 .0402 162.5016 1 .0000 .1017 .0169 .8573 LE4MED 8711 .0809 115.7987 1 .0000 .0931 .4641 MATURE -1.0267 .0915 125.9793 1 .0000 .0331 .6414 MATURE -1.0267 .0912 57.564 1 .0000 .1724 .3230 INDEPEND -1.1302 .0577 384.1919 1 .0128 .0111		_	0.2.			019		(<i>D</i>)
AN	AG	.4916	.0183	720.9885	1	.0000	.2365	1.6349
NONSCIA 0564 .0695 .6587 1 .4170 .0000 .9452 RESITS 8611 .0986 76.2421 1 .0000 .0760 .4227 GSTAKEN .2417 .0647 13.9742 .0001 .0321 1.2020 ASN 0521 .0580 .8076 1 .3688 .0000 .9492 APPDATE1 5119 .0402 162.5016 1 .0000 1117 .5994 PREVAPP .0440 .0916 .2303 1 .6313 .0000 .0941 .4185 INSURNCE 1539 .0645 5.6910 1 .0171 0169 .8573 INSURNCE 1325 .0793 1 .0000 .0831 .6485 SCIAL2 1214 .0290 17.5654 1 .0000 .1724 .3230 INDEPEND 1899 .0763 6.1943 1 .0128 .4728 GRAMMAR .2399	AN	.0925	.0521	3.1506	1	.0759	.0095	1.0969
RESITS 8611 .0966 76.2421 1 .0000 0760 .4227 GSTAKEN .2417 .0647 13.9742 1 .0002 .0305 1.2735 GSCRADE1 .1840 .0471 15.2380 .0001 .0321 1.2020 ASN 0521 .0580 .8076 1 .3688 .0000 .9492 APPDATE1 5119 .0402 162.5016 1 .0171 .594 PREVAPP .0440 .0916 .2303 1 .6313 .0000 1.0449 INSURNCE 1539 .0645 5.6910 1 .0171 .0169 .8573 LE4MED 8711 .0809 115.7987 1 .0000 .0831 1.6414 MATURE -1.0267 .0915 125.9793 1 .0000 .0348 .8857 ETMNIC3 1214 .0290 17.5654 1 .0000 .1724 .4323 INDEPEND 1899 .0763 6.1943 1 .0128 .0181 .2772	NONSCIA	0564	.0695	.6587	1	.4170	.0000	.9452
GSTAKEN .2417 .0647 13.9742 1 .0002 .0305 1.2735 GSGRADE1 .1840 .0471 15.2380 1 .0001 .0321 1.2020 ASN .0521 .0580 .8076 1 .3688 .0000 .9492 APPDATEI 5119 .0402 162.5016 1 .0000 .1117 .5994 INSURNCE 1539 .0645 5.6910 1 .0171 0169 .8573 LE4MED 8711 .0809 115.7987 1 .0000 .0941 .4185 SOCTAL2 1214 .0290 17.5654 1 .0000 .0831 1.6414 MATURE -1.0267 .0915 125.9793 1 .0000 0724 .3230 INDEPEND 1899 .0763 6.1943 1 .0128 .0161 .8270 FEHE 7490 .0992 57.0377 1 .0000 .0411 .6772 <tr< td=""><td>RESITS</td><td>8611</td><td>.0986</td><td>76.2421</td><td>1</td><td>.0000</td><td>0760</td><td>.4227</td></tr<>	RESITS	8611	.0986	76.2421	1	.0000	0760	.4227
GSGRADE1 .1840 .0471 15.2380 1 .0001 .0321 1.2020 ASN 0521 .0580 .8076 1 .3688 .0000 .9492 APPDATE1 5119 .0402 162.5016 1 .0000 117 .5994 PREVAPP .0440 .0916 .2303 1 .6313 .0000 1.0449 INSURNCE 1539 .0645 5.6910 1 .0171 0169 .8573 MEDAPP6 0495 .1173 .1782 1 .6729 .0000 .9517 SEX1 .4955 .0520 90.8911 .0000 .0348 .8857 CTAL2 1214 .0220 17.5654 1 .0000 0348 .8857 ETHNIC3 -1.1302 .0577 384.1919 1 .0128 .0181 .6270 FEHE 7490 .0992 57.0377 1 .0000 .0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 <td>GSTAKEN</td> <td>.2417</td> <td>.0647</td> <td>13.9742</td> <td>1</td> <td>.0002</td> <td>.0305</td> <td>1.2735</td>	GSTAKEN	.2417	.0647	13.9742	1	.0002	.0305	1.2735
ASN 0521 .0580 .8076 1 .3688 .0000 .9492 APPDATE1 5119 .0402 162.5016 1 .0000 1117 .5994 NRURCE 1539 .0645 5.6910 1 .0171 0169 .8573 LE4MED 8711 .0809 115.7987 1 .0000 0941 .4185 SEX1 .4955 .0520 90.8911 1 .0000 0821 .3582 SOCIAL2 1214 .0200 17.5654 1 .0000 0348 .8857 ETHNIC3 -1.1302 .0577 384.1919 1 .0128 .0121 .3230 INDEPEND 1899 .0763 6.1943 1 .0128 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 .0654 .4728 GRAMMAR .2399 .012 5.6130 1 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 .2097 1.5554	GSGRADE1	.1840	.0471	15.2380	1	.0001	.0321	1.2020
APPDATE1 5119 .0402 162.5016 1 .0000 1117 .5994 PREVAPP .0440 .0916 .2303 1 .6313 .0000 1.0449 INSURNCE 1539 .0645 5.6910 1 .0171 0169 .8573 LE4MED 8711 .0809 115.7987 1 .0000 0941 .4185 SEX1 .4955 .0520 90.8911 .0000 .0831 1.6414 MATURE -1.0267 .0915 125.9793 1 .0000 0742 .3230 INDEPEND -1.1302 .0577 384.1919 1 .0000 0181 .8270 FEHE 7490 .0992 57.0377 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 1.200 NonSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 R	ASN	0521	.0580	.8076	1	.3688	.0000	.9492
PREVAPP .0440 .0916 .2303 1 .6313 .0000 1.0449 INSURNCE 1539 .0645 5.6910 1 .0171 0169 .8573 MEDAPP6 0495 .1173 .1782 1 .0000 0941 .4185 MATURE -1.0267 .0915 125.9793 1 .0000 0348 .8857 SOCIAL2 1214 .0290 17.5654 1 .0000 0348 .8857 ETHNIC3 -1.1302 .0577 384.1919 1 .0000 0348 .8857 FEHE 7490 .0992 57.0377 1 .0000 0654 .4728 GRAMMAR .2399 .1012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 .11070 Constant .0758 .3446 .0484 1 .8258 .0000	APPDATE1	5119	.0402	162.5016	1	.0000	1117	.5994
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PREVAPP	.0440	.0916	.2303	1	.6313	.0000	1.0449
LE4MED8711 .0809 115.7987 1 .00000941 .4185 MEDAPP60495 .1173 .1782 1 .6729 .0000 .9517 SEX1 .4955 .0520 90.8911 1 .00000982 .3582 SOCIAL21214 .0290 17.5654 1 .00000348 .8857 ETHNIC3 -1.1302 .0577 384.1919 1 .00001724 .3230 INDEPEND1899 .0763 6.1943 1 .01280181 .8270 FEHE7490 .0992 57.0377 1 .00000654 .4728 GRAMMAR .2399 .1012 5.6130 1 .0178 .0168 1.2711 OTHSCHL3898 .0800 23.7656 1 .00000411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 1997 applicants only Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0005 .0282 1.2100 NONSCIA0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS9018 .06610 3.0074 1 .0829 .0089 1.1166 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1166 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1166 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1166 STAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1166 STAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1166 SCTAL2 .203 .0459 23.0577 1 .0000 .0406 1.2464 MEDAPP6 .1160 .1193 .9462 1 .3307 .0000 .0466 .7737 LE4MED6461 .0847 58.1320 1 .0000 .0667 .4969 MATURE .6964 .0921 57.1567 1 .0000 .0667 .4964 MEDAPP6 .1160 .1193 .9462 1 .3307 .0000 .0667 .4964 MEDAPP6 .1160 .1193 .9462 1 .3307 .0000 .0657 .4984 SOCIAL2 .0833 .0285 8.5256 1 .0035 .0226 .9201 MEDAPP6 .1160 .1193 .9462 1 .3307 .0000 .0657 .4984 SOCIAL2 .0833 .0285 8.5256 1 .0035 .0226 .9201 MEDAPP6 .1160 .1193 .9462 1 .3307 .0000 .0567 .4984 SOCIAL2 .0833 .0285 8.5256 1 .0035 .0226 .9201 MEDAPP6 .0453 .0766 .3789 1 .5382 .0000 1.0464 FEHE7444 .0994 56.1169 1 .0000	INSURNCE	1539	.0645	5.6910	1	.0171	0169	.8573
MEDAPP6 0495 .1173 .1782 1 .6729 .0000 .9517 SEX1 .4955 .0520 90.8911 1 .0000 .0831 1.6414 MATURE -1.2027 .0915 125.9793 1 .0000 0348 .8857 SOCIAL2 1214 .0290 17.5654 1 .0000 0348 .8857 ETHNIC3 -1.1302 .0577 384.1919 1 .0128 0181 .8270 FEHE 7490 .0992 57.0377 1 .0000 0654 .4728 GRAMMAR .2399 .1012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0000 <	LE4MED	8711	.0809	115.7987	1	.0000	0941	.4185
SEX1 .4955 .0520 90.8911 1 .0000 .0831 1.6414 MATURE -1.0267 .0915 125.9793 1 .0000 0348 .8857 SOCIAL2 1214 .0290 17.5654 1 .0000 0348 .8857 ETHNIC3 -1.1302 .0577 384.1919 1 .0000 0654 .4728 GRAMMAR .2399 .012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 .8258	MEDAPP6	0495	.1173	.1782	1	.6729	.0000	.9517
MATURE -1.0267 .0915 125.9793 1 .0000 0982 .3582 SOCIAL2 1214 .0290 17.5654 1 .0000 0348 .8857 ETHNIC3 -1.1302 .0577 384.1919 1 .0000 01341 .8270 FEHE 7490 .0992 57.0377 1 .0000 0654 .4728 GRAMMAR .2399 .1012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0454 .4728 GRAMMAR .0758 .3446 .0484 1 .8258 1997 applicants only Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .0297 1.554 AN .1906 .0547 .12.1533 1 .0000 .0282 1.2100 NONSCIA 0838 .0651 1.6566 .1981 .0000 .9197 R	SEX1	4955	.0520	90.8911	1	.0000	.0831	1.6414
SOCIAL2 1214 .0290 17.5654 1 .0000 0348 .8857 ETHNIC3 -1.1302 .0577 384.1919 1 .0000 1724 .3230 INDEPEND 1899 .0763 6.1943 1 .0128 0181 .8270 FEHE 7490 .0992 57.0377 1 .0000 0654 .4728 GRAMMAR .2399 .1012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 1997 applicants only Variable B S.E. Wald Mat .8258 1997 applicants .0918 .0666 7.1293 .0000 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .1116	MATURE	-1.0267	.0915	125.9793	1	.0000	0982	.3582
Detrining 1.1302 0.0577 384.1919 1 0.000 1724 .3230 INDEPEND 1899 0.0763 6.1943 1 0.128 0181 .8270 FEHE 7490 0.992 57.0377 1 .0000 0654 .4728 GRAMMAR .2399 1.012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 1997 applicants only Variable B S.E. Wald df Sig Exp(B) AG .4417 .0186 564.6638 1 .0000 .0297 1.554 AN .1906 .0547 12.1533 1 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 .0406 1.2464 ASN	SOCTAL2	- 1214	0290	17 5654	1	0000	- 0348	8857
INDEPEND 1899 .0763 6.1943 1 .0128 0181 .8270 FEHE 7490 .0992 57.0377 1 .0000 0654 .4728 GRAMMAR .2399 .1012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0000 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1.1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 .0816 .4058 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0466 <t< td=""><td>ETHNIC3</td><td>-1 1302</td><td>0577</td><td>384 1919</td><td>1</td><td>0000</td><td>- 1724</td><td>3230</td></t<>	ETHNIC3	-1 1302	0577	384 1919	1	0000	- 1724	3230
FEHE 7490 .0992 57.0377 1 .0000 0654 .4728 GRAMMAR .2399 .1012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0611 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 1997 applicants only Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0005 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 .0489 .1166 GSGRADE1 .2023 .0459 23.0537 1 .0000 .1222 .5981 <td< td=""><td>INDEPEND</td><td>- 1899</td><td>0763</td><td>6 1943</td><td>1</td><td>0128</td><td>- 0181</td><td>8270</td></td<>	INDEPEND	- 1899	0763	6 1943	1	0128	- 0181	8270
GRAMMAR .2399 .1012 5.6130 1 .0178 .0168 1.2711 OTHSCHL 3898 .0800 23.7656 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 1997 applicants only Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0000 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 .0816 .4058 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1116 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0219 1.2922 <td< td=""><td>FEHE</td><td>- 7490</td><td>0992</td><td>57 0377</td><td>1</td><td>0000</td><td>- 0654</td><td>4728</td></td<>	FEHE	- 7490	0992	57 0377	1	0000	- 0654	4728
OTHSCHL 3898 .0802 23.7656 1 .0000 0411 .6772 PLOCAL .1016 .0786 1.6702 1 .1962 .0000 1.1070 Constant .0758 .3446 .0484 1 .8258 1997 applicants only Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0000 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1.1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 .0816 .4058 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1116 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0466 1.2464 ASN .1783 .0626 8.1123 1 .0044 .0219 1.1952	GRAMMAR	2399	1012	5 6130	1	0178	0168	1 2711
DINCLE 10000 10000 10000 10000 10000 Constant 00758 3446 0484 1 1962 0000 1.1070 Constant 00758 3446 0484 1 .8258 .0000 1.1070 Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0005 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 0816 .4058 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0406 1.2464 ASN .1783 .0626 8.1123 1 .0044 .0219 1.116 INSURNCE 2566 .0616 17.3298 1 .0000 0662 .5241 MEDAPP6 <td< td=""><td>OTHSCHI.</td><td>- 3898</td><td>0800</td><td>23 7656</td><td>1</td><td>0000</td><td>- 0411</td><td>6772</td></td<>	OTHSCHI.	- 3898	0800	23 7656	1	0000	- 0411	6772
Import 1010 10700 10702 1 10000 11070 Constant .0758 .3446 .0484 1 .8258 1997 applicants only Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0000 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 0816 .4058 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0406 1.2464 ASN .1783 .0626 8.1123 1 .0044 .0219 1.1952 APPDATE1 5140 .0370 193.0571 1 .0000 0346 .7737 LE4MED 6461 .0847 58.1320 1 .0000 .0662 .5241 <		1016	0786	1 6702	1	1962	0000	1 1070
1997 applicants only Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0005 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 0816 .4058 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1116 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0406 1.2464 ASN .1783 .0626 8.1123 1 .0044 .0219 1.1952 APPDATE1 5140 .0370 193.0571 1 .0000 1222 .5981 NEXPNCE 2566 .0616 17.3298 1 .0000 .0346 .7737 LE4MED 6461 .0847 58.1320 1 <td< td=""><td>Constant</td><td>0758</td><td>3446</td><td>0484</td><td>1</td><td>8258</td><td>.0000</td><td>1.10/0</td></td<>	Constant	0758	3446	0484	1	8258	.0000	1.10/0
1997 applicants only Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0005 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 0816 .4058 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.116 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0406 1.2464 ASN .1783 .0626 8.1123 1 .0044 .0219 1.1952 APPDATE1 5140 .0370 193.0571 1 .0000 .0461 .7737 LE4MED 6461 .0847 58.1320 1 .0000 .0662 .5241 MEDAPP6 -1160 .1193 .9462 1 .330	competance	.0,00			-	.0250		
Variable B S.E. Wald df Sig R Exp(B) AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0005 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 0816 .4058 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1116 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0466 1.2464 ASN .1783 .0626 8.1123 1 .0044 .0219 1.1952 APPDATE1 5140 .0370 193.0571 1 .0000 0346 .7737 LE4MED 6461 .0847 58.1320 1 .0000 .0662 .5241 MEDAPP6<	1997 applica	ants only						
AG .4417 .0186 564.6638 1 .0000 .2097 1.5554 AN .1906 .0547 12.1533 1 .0005 .0282 1.2100 NONSCIA 0838 .0651 1.6566 1 .1981 .0000 .9197 RESITS 9018 .0966 87.1293 1 .0000 0816 .4058 GSTAKEN .1058 .0610 3.0074 1 .0829 .0089 1.1116 GSGRADE1 .2203 .0459 23.0537 1 .0000 .0406 1.2464 ASN .1783 .0626 8.1123 1 .0044 .0219 1.1952 APPDATE1 5140 .0370 193.0571 1 .0000 .1222 .5981 INSURNCE 2566 .0616 17.3298 1 .0000 .0346 .7737 LE4MED 6461 .0847 58.1320 1 .0000 .0687 1.4969 MATURE 6964 .0921 57.1567 1 .0000 .0657	Variable	B	S.E.	Wald	df	Siq	R	Exp(B)
AN.1906.054712.15331.0005.02821.2100NONSCIA0838.06511.65661.1981.0000.9197RESITS9018.096687.12931.00000816.4058GSTAKEN.1058.06103.00741.0829.00891.1116GSGRADE1.2203.045923.05371.0000.04061.2464ASN.1783.06268.11231.0044.02191.1952APPDATE15140.0370193.05711.00001222.5981PREVAPP.0451.0920.24051.6238.00001.0461INSURNCE2566.061617.32981.00000662.5241MEDAPP61160.1193.94621.3307.0000.8904SEX1.4034.051062.45001.0000.06871.4969MATURE6964.092157.15671.0000.0657.4984SOCIAL20833.02858.52561.0035.0226.9201ETHNIC39841.0577291.16381.00001503.3738INDEPEND.0453.0736.37891.5382.00001.0464FEHE7444.099456.11691.00000650.4750GRAMMAR.1704.09183.4448.0634.01061.1858<	AG	.4417	.0186	564.6638	1	.0000	.2097	1.5554
NONSCIA0838.06511.65661.1981.0000.9197RESITS9018.096687.12931.00000816.4058GSTAKEN.1058.06103.00741.0829.00891.1116GSGRADE1.2203.045923.05371.0000.04061.2464ASN.1783.06268.11231.0044.02191.1952APPDATE15140.0370193.05711.00001222.5981PREVAPP.0451.0920.24051.6238.00001.0461INSURNCE2566.061617.32981.00000662.5241MEDAPP61160.1193.94621.3307.0000.8904SEX1.4034.051062.45001.0000.06871.4969MATURE6964.092157.15671.0000.0657.4984SOCIAL20833.02858.52561.0035.0226.9201ETHNIC39841.0577291.16381.00001503.3738INDEPEND.0453.0736.37891.5382.00001.0464FEHE7444.099456.11691.00000650.4750GRAMMAR.1704.0918.344481.0634.01061.1858OTHSCHL4885.078738.53111.0022.0142	AN	.1906	.0547	12.1533	1	.0005	.0282	1.2100
RESITS9018.096687.12931.00000816.4058GSTAKEN.1058.06103.00741.0829.00891.1116GSGRADE1.2203.045923.05371.0000.04061.2464ASN.1783.06268.11231.0044.02191.1952APPDATE15140.0370193.05711.00001222.5981PREVAPP.0451.0920.24051.6238.00001.0461INSURNCE2566.061617.32981.00000662.5241MEDAPP61160.1193.94621.3307.0000.8904SEX1.4034.051062.45001.0000.06871.4969MATURE6964.092157.15671.00000657.4984SOCIAL20833.02858.52561.00350226.9201ETHNIC39841.0577291.16381.00001503.3738INDEPEND.0453.0736.37891.5382.00001.0464FEHE7444.099456.11691.00000650.4750GRAMMAR.1704.0918.44481.0634.01061.1858OTHSCHL4885.078738.53111.0022.01421.1865CODAL.1710.07984.59011.0322.0142<	NONSCIA	0838	.0651	1.6566	1	.1981	.0000	.9197
GSTAKEN.1058.06103.00741.0829.00891.1116GSGRADE1.2203.045923.05371.0000.04061.2464ASN.1783.06268.11231.0044.02191.1952APPDATE15140.0370193.05711.00001222.5981PREVAPP.0451.0920.24051.6238.00001.0461INSURNCE2566.061617.32981.00000346.7737LE4MED6461.084758.13201.00000662.5241MEDAPP61160.1193.94621.3307.0000.8904SEX1.4034.051062.45001.0000.06871.4969MATURE6964.092157.15671.00000657.4984SOCIAL20833.02858.52561.00350226.9201ETHNIC39841.0577291.16381.00001503.3738INDEPEND.0453.0736.37891.5382.00001.0464FEHE7444.099456.11691.00000650.4750GRAMMAR.1704.09183.44481.0634.01061.1858OTHSCHL4885.078738.53111.0022.01421.1865PLOCAL.1710.07984.59011.0322.014	RESITS	9018	.0966	87.1293	1	.0000	0816	.4058
GSGRADE1.2203.045923.05371.0000.04061.2464ASN.1783.06268.11231.0044.02191.1952APPDATE15140.0370193.05711.00001222.5981PREVAPP.0451.0920.24051.6238.00001.0461INSURNCE2566.061617.32981.00000346.7737LE4MED6461.084758.13201.00000662.5241MEDAPP61160.1193.94621.3307.0000.8904SEX1.4034.051062.45001.00000657.4984SOCIAL20833.02858.52561.00350226.9201ETHNIC39841.0577291.16381.00001503.3738INDEPEND.0453.0736.37891.5382.00001.0464FEHE7444.099456.11691.00000650.4750GRAMMAR.1704.09183.44481.0634.01061.1858OTHSCHL4885.078738.53111.0022.01421.1865PLOCAL.1710.07984.59011.0322.01421.1865	GSTAKEN	.1058	.0610	3.0074	1	.0829	.0089	1.1116
ASN.1783.06268.11231.0044.02191.1952APPDATE15140.0370193.05711.00001222.5981PREVAPP.0451.0920.24051.6238.00001.0461INSURNCE2566.061617.32981.00000346.7737LE4MED6461.084758.13201.00000662.5241MEDAPP61160.1193.94621.3307.0000.8904SEX1.4034.051062.45001.00000657.4984SOCIAL20833.02858.52561.00350226.9201ETHNIC39841.0577291.16381.00001503.3738INDEPEND.0453.0736.37891.5382.00001.0464FEHE7444.099456.11691.00000650.4750GRAMMAR.1704.09183.44481.0634.01061.1858OTHSCHL4885.078738.53111.00000534.6136PLOCAL.1710.07984.59011.0322.01421.1865	GSGRADE1	.2203	.0459	23.0537	1	.0000	.0406	1.2464
APPDATE15140.0370193.05711.00001222.5981PREVAPP.0451.0920.24051.6238.00001.0461INSURNCE2566.061617.32981.00000346.7737LE4MED6461.084758.13201.00000662.5241MEDAPP61160.1193.94621.3307.0000.8904SEX1.4034.051062.45001.00000657.4984SOCIAL20833.02858.52561.00350226.9201ETHNIC39841.0577291.16381.00001503.3738INDEPEND.0453.0736.37891.5382.00001.0464FEHE7444.099456.11691.00000650.4750GRAMMAR.1704.09183.44481.0634.01061.1858OTHSCHL4885.078738.53111.00000534.6136PLOCAL.1710.07984.59011.0322.01421.1865	ASN	.1783	.0626	8.1123	1	.0044	.0219	1,1952
PREVAPP .0451 .0920 .2405 1 .6238 .0000 1.0461 INSURNCE 2566 .0616 17.3298 1 .0000 0346 .7737 LE4MED 6461 .0847 58.1320 1 .0000 0662 .5241 MEDAPP6 1160 .1193 .9462 1 .3307 .0000 .8904 SEX1 .4034 .0510 62.4500 1 .0000 0657 .4984 SOCIAL2 0833 .0285 8.5256 1 .0035 0226 .9201 ETHNIC3 9841 .0577 291.1638 1 .0000 0650 .4750 INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0020 0534	APPDATE1	5140	.0370	193.0571	1	.0000	1222	.5981
INSURNCE 2566 .0616 17.3298 1 .0000 0346 .7737 LE4MED 6461 .0847 58.1320 1 .0000 0662 .5241 MEDAPP6 1160 .1193 .9462 1 .3307 .0000 .8904 SEX1 .4034 .0510 62.4500 1 .0000 0657 .4984 SOCIAL2 0833 .0285 8.5256 1 .0035 0226 .9201 ETHNIC3 9841 .0577 291.1638 1 .0000 0650 .4750 INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142	PREVAPP	.0451	.0920	.2405	1	.6238	.0000	1.0461
LE4MED 6461 .0847 58.1320 1 .0000 0662 .5241 MEDAPP6 1160 .1193 .9462 1 .3307 .0000 .8904 SEX1 .4034 .0510 62.4500 1 .0000 .0687 1.4969 MATURE 6964 .0921 57.1567 1 .0000 0657 .4984 SOCIAL2 0833 .0285 8.5256 1 .0035 0226 .9201 ETHNIC3 9841 .0577 291.1638 1 .0000 1503 .3738 INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142	INSURNCE	2566	.0616	17.3298	1	.0000	0346	.7737
MEDAPP6 1160 .1193 .9462 1 .3307 .0000 .8904 SEX1 .4034 .0510 62.4500 1 .0000 .0687 1.4969 MATURE 6964 .0921 57.1567 1 .0000 0657 .4984 SOCIAL2 0833 .0285 8.5256 1 .0035 0226 .9201 ETHNIC3 9841 .0577 291.1638 1 .0000 1503 .3738 INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865	LE4MED	6461	.0847	58.1320	1	.0000	0662	. 5241
SEX1 .4034 .0510 62.4500 1 .0000 .0687 1.4969 MATURE 6964 .0921 57.1567 1 .0000 0657 .4984 SOCIAL2 0833 .0285 8.5256 1 .0035 0226 .9201 ETHNIC3 9841 .0577 291.1638 1 .0000 1503 .3738 INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865 Constant - 7329 .3414 4.6079 1 .0318	MEDAPP6	1160	.1193	.9462	1	.3307	.0000	.8904
MATURE 6964 .0921 57.1567 1 .0000 0657 .4984 SOCIAL2 0833 .0285 8.5256 1 .0035 0226 .9201 ETHNIC3 9841 .0577 291.1638 1 .0000 1503 .3738 INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865 Constant - 7329 .3414 4.6079 1 .0318	SEX1	.4034	.0510	62.4500	1	.0000	.0687	1.4969
SOCIAL2 0833 .0285 8.5256 1 .0035 0226 .9201 ETHNIC3 9841 .0577 291.1638 1 .0000 1503 .3738 INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865	MATURE	6964	.0921	57.1567	1	.0000	0657	.4984
ETHNIC3 9841 .0577 291.1638 1 .0000 1503 .3738 INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0318 .0318	SOCTAL2	0833	.0285	8.5256	1	.0035	0226	. 92.01
INDEPEND .0453 .0736 .3789 1 .5382 .0000 1.0464 FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865 Constant - 7329 .3414 4.6079 1 .0318	ETHNIC3	9841	.0577	291.1638	1	.0000	1503	.3738
FEHE 7444 .0994 56.1169 1 .0000 0650 .4750 GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865	TNDEPEND	0453	0736	3789	1	5382	0000	1 0464
GRAMMAR .1704 .0918 3.4448 1 .0634 .0106 1.1858 OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865	FEHE	- 7444	0994	56 1169	1	0000	- 0650	4750
OTHSCHL 4885 .0787 38.5311 1 .0000 0534 .6136 PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865 Constant - 7329 .3414 4.6079 1 .0318	GRAMMAR	1704	0918	3 4448	1	0634	0106	1 1858
PLOCAL .1710 .0798 4.5901 1 .0322 .0142 1.1865	OTHSCHI	4885	.0787	38,5311	1	.0000	0534	.6136
Constant -7329 3414 4 6079 1 0318	PLOCAL	.1710	.0798	4,5901	1	.0322	.0142	1,1865
	Constant	7329	.3414	4.6079	1	.0318		

Applicants taking Scottish Highers{tc ''Applicants taking just Scottish Highers'' \l 3} alone

In the case of A-level applicants, the majority were applying pre-A-level, and therefore selection was inevitably based more on estimated A-level grades (and GCSE grades) than on achieved A-level performance which was only known after offers had been made. However, candidates presenting with Scottish Highers have already obtained their results (and it is for that reason that the regression slopes on mean grade at Scottish Highers at individual medical schools, to be presented below, are so steep in comparison with the effects of as yet unknown A-level grades). A crucial problem in the interpretation of these complex data is to understand the extent to which the absence of precise knowledge of achieved A-levels at the time of selection itself is the basis for the difference between white and non-white applicants. That problem can in part be resolved by considering those candidates presenting to Scottish schools with just Highers. If white and non-White groups are equivalent in that subset of applicants, then the necessity to use A-level estimates in the A-level applicants could be the reason for non-White applicants apparently being disadvantaged. If on the other hand ethnic minority applicants applying with Highers alone are less likely to made offers, then the role of estimated A-levels in other applicants is less likely to explain the differences found.

An analysis was therefore carried out of all candidates presenting *only* with Scottish Highers qualifications to Scottish medical schools. Of these 1260 applicants, ethnic origin was unknown in 35 cases, and analysis was restricted to the remaining 1225, 156 (12.7%) of whom were from ethnic minorities. A new variable, OFFERSC, was used as the dependent variable, and it indicated whether or not the applicant received any offers from the Scottish medical schools to which they had applied. These candidates differed in the number of Scottish medical schools to which they had applied (48 applying to 1, 171 to 2, 270 to 3, 474 to 4, 261 to 5, and 1 to 6 Scottish schools). Since a candidate is obviously more likely to receive an offer if they apply to more schools, a variable NSCOT was also entered into the regression to take this factor into account. Ethnic minority applicants applied to a mean of 3.48 Scottish schools (SD 1.25, N=156), compared to a mean of 3.61 Scottish schools (SD 1.06, N=1069) in White applicants, a non-significant difference. Other variables in the analysis were similar to those used elsewhere in this report, with the exception that variables related entirely to A-levels or to non-Scottish education (Grammar schools) were omitted. The logistic regression analysis below shows the results:

Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
NSCOT	.6954	.0971	51.2469	1	.0000	.2040	2.0045
SHG	1.2233	.1307	87.5811	1	.0000	.2689	3.3984
SHN	.5018	.1210	17.2096	1	.0000	.1134	1.6517
RESITS	.2030	.4169	.2370	1	.6264	.0000	1.2250
APPDATE1	7331	.2272	10.4096	1	.0013	0843	.4804
PREVAPP	.4367	.4194	1.0845	1	.2977	.0000	1.5477
INSURNCE	.1080	.3466	.0971	1	.7553	.0000	1.1141
LE4MED	7930	.3200	6.1391	1	.0132	0591	.4525
MEDAPP6	4325	.4570	.8956	1	.3440	.0000	.6489
SEX1	.2725	.1969	1.9151	1	.1664	.0000	1.3133
MATURE	.1730	.4218	.1682	1	.6817	.0000	1.1889
SOCIAL2	0594	.1095	.2941	1	.5876	.0000	.9424
ETHNIC3	6629	.2921	5.1519	1	.0232	0516	.5154
INDEPEND	.2059	.2807	.5383	1	.4631	.0000	1.2287
FEHE	-1.1122	.6312	3.1045	1	.0781	0306	.3288
OTHSCHL	-1.3252	.3719	12.6985	1	.0004	0951	.2657
Constant	-7 2025	1 5622	21 2581	1	0000		

------ Variables in the Equation ------

The effect of ethnic origin remains statistically significant (p=.0232), albeit at a much lower significance level than in the main analysis since the sample size is very much smaller, and hence

the power is lower. The effect size (-.6629), with its 95% confidence interval of -.292 to -1.235 suggests it is compatible with the figure of -1.0472 reported earlier on the overall analysis.

	% of candidates receiving an offer (N)	
Mean grade at Highers (A=6, B=4, C=2)	White	Non-White
<4	24.6% (69)	21.7% (23)
4 - 4.49	53.1% (64)	33.3% (15)
4.5 - 4.99	64.9% (111)	50.0% (16)
5 - 5.49	85.5% (248)	80.0% (25)
5.5 - 5.99	92.5% (228)	91.7% (36)
6	97.4% (349)	92.7% (41)

The table below shows the proportions of applicants receiving offers in relation to the mean grade attained at Scottish Highers:

Although the numbers of ethnic minority applicants are relatively small, the pattern (confirmed by the logistic regression) is clear: at all level of achievement at Highers, ethnic minority applicants are less likely to receive an offer than White applicants, and the overall effect is statistically significant and compatible with that reported for applicants as a whole. The same data are shown in the graph.

The conclusion seems to be clear that ethnic minority applicants to Scottish schools presenting with Scottish disadvantaged relative to White Highers are applicants, and this cannot be explained due to sixth form examination results not being known, since in Scotland they are available to selectors. The probability therefore has to be also that a similar effect applies outside Scotland to applicants applying pre-Alevel. However, GCSE results have not been taken into account (and cannot be taken into account in this data set), and although they may provide some additional explanation, it is not clear whether even if they were to provide an explanation they would provide a justification for their use in selection.

[Figure: Applicants receiving an offer v Mean Scottish Highers Grade]

Mature applicants and applicants resitting examinations.{tc ''Mature applicants and applicants resitting examinations.'' \l 3}

In the case of mature applicants, offers are often made on the basis of degree class, rather than Alevels taken perhaps three or more years previous. In the case of resit applicants, the offer made is often higher than it would be for a candidate taking A-levels for the first time, and the final grade achieved is not therefore as good an indicator of the likelihood of an offer. For these reasons it was decided to carry out an overall analysis of applicants who are not taking resits, and who are not mature (<21).

A total of 14773 applicants are included in the analysis, and the overall logistic regression is shown below:

		Variable	es in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4910	.0148	1100.609	1	.0000	.2415	1.6339
AN	.2132	.0474	20.2258	1	.0000	.0311	1.2377
NONSCIA	1128	.0549	4.2213	1	.0399	0109	.8933
GSTAKEN	.1258	.0492	6.5256	1	.0106	.0155	1.1340
GSGRADE1	.1772	.0364	23.6671	1	.0000	.0339	1.1939
ASN	.0465	.0476	.9542	1	.3287	.0000	1.0476
APPDATE1	4417	.0324	185.4713	1	.0000	0987	.6429
PREVAPP	0258	.0909	.0803	1	.7769	.0000	.9746
INSURNCE	2530	.0493	26.2770	1	.0000	0359	.7765
LE4MED	7632	.0675	127.8914	1	.0000	0818	.4662
MEDAPP6	1088	.1086	1.0042	1	.3163	.0000	.8969
SEX1	.4872	.0423	132.6205	1	.0000	.0833	1.6277
SOCIAL2	0997	.0232	18.4923	1	.0000	0296	.9051
ETHNIC3	9969	.0470	449.7607	1	.0000	1542	.3690
INDEPEND	.0474	.0574	.6817	1	.4090	.0000	1.0485
FEHE	8159	.0836	95.1457	1	.0000	0703	.4422
GRAMMAR	.2178	.0704	9.5588	1	.0020	.0200	1.2433
OTHSCHL	4309	.0614	49.1913	1	.0000	0501	.6499
PLOCAL	.0865	.0656	1.7382	1	.1874	.0000	1.0903
SHG	1.4426	.1102	171.4626	1	.0000	.0949	4.2317
SHN	.4378	.0979	20.0180	1	.0000	.0309	1.5494
Constant	-12.6799	.8871	204.3270	1	.0000		

The outcome of the analysis is very similar to the overall analysis reported earlier, without any major changes in the conclusions to be reached. In particular the effect size for ethnic origin (-.997, 95% CI -1.089 to -.904) is effectively unchanged from its value in the overall analysis (-1.047). The inclusion of resit applicants and mature applicants cannot therefore explain the effects in the overall analysis, and it is highly unlikely that it explains the effect in individual schools either. The data are fully available for further checking of that conclusion.

The statistical interaction of sex and ethnic origin.{tc ''The statistical interaction of sex and ethnic origin.'' \l 3}

The overall analysis has suggested that applicants from ethnic minorities and male applicants are disadvantaged in selection. In view of the inevitable interest in these two conclusions it is interesting to look at the question of whether there is a statistical interaction between them (i.e. is the degree of disadvantage of non-White males the same as the degree of disadvantage of non-White females). The overall analysis was therefore repeated with the inclusion of an interaction term (ETHXSEX).

		Variable	es in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4705	.0130	1304.065	1	.0000	.2293	1.6007
AN	.1126	.0374	9.0651	1	.0026	.0169	1.1192
NONSCIA	0978	.0475	4.2364	1	.0396	0095	.9068
GSTAKEN	.1900	.0443	18.4117	1	.0000	.0257	1.2092
GSGRADE1	.2143	.0327	42.8397	1	.0000	.0406	1.2390
ASN	.0790	.0425	3.4587	1	.0629	.0077	1.0822
APPDATE1	5735	.0271	447.7856	1	.0000	1342	.5635
PREVAPP	3898	.0542	51.6978	1	.0000	0448	.6772
INSURNCE	1248	.0446	7.8418	1	.0051	0154	.8826
LE4MED	6449	.0594	117.8710	1	.0000	0684	.5247
MEDAPP6	1091	.0837	1.6992	1	.1924	.0000	.8966
SEX1	.4978	.0462	116.0169	1	.0000	.0678	1.6452
SOCIAL2	1059	.0204	26.8749	1	.0000	0317	.8995
ETHNIC3	9190	.0540	289.6252	1	.0000	1078	.3989
INDEPEND	0992	.0537	3.4054	1	.0650	0075	.9056
FEHE	8939	.0693	166.5922	1	.0000	0815	.4091
GRAMMAR	.2271	.0689	10.8644	1	.0010	.0189	1.2550
OTHSCHL	6312	.0528	142.7445	1	.0000	0754	.5319
PLOCAL	.0990	.0567	3.0463	1	.0809	.0065	1.1040
SHG	.9880	.0835	140.0218	1	.0000	.0746	2.6857
SHN	.3280	.0828	15.7027	1	.0001	.0235	1.3881
ETHXSEX	1479	.0751	3.8728	1	.0491	0087	.8625
Constant	-9.2640	.6942	178.0809	1	.0000		

For simplicity the analysis has also been restricted to the 18354 applicants for whom ethnic origin is known (and this also provides a clear demonstration that none of the major conclusions would be altered if this group were completely excluded from the analysis, rather than being replaced by a mean value in the statistical analysis).

The interaction of ethnic origin x sex just achieves a conventional significance level of p=.0491, which suggests a relatively small effect size given the large sample size. The analysis was repeated using dummy variable coding of the four ethnic x sex groups to locate the interaction, the reference group being White Males.

	b coefficient (SE)	Odds ratio (95% CI)
White male	0 (reference group)	1 (-)
White female	.498 (.046)	1.645 (1.503 - 1.801)
Non-White male	919 (.054)	.399 (.359444)
Non-White female	569 (.0559)	.566 (.507632)

Since the b coefficient is .498 in white females, and -.919 in non-white males, the absence of an interaction would imply an effect of +.498 - .919 = -.421 in non-white females. The actual effect is -.569, suggesting that non-white females are somewhat more disadvantaged than expected. The effect is however barely significant, and there would seem therefore to be little point in trying to isolate it in individual medical schools.

The effects of imputation of missing values using mean substitution.{tc ''The effects of imputation of missing values using mean substitution.'' \l 3}

As described earlier in the report, there are inevitably missing values in a data set such as this, and these have been handled by imputation of population means. The question remains whether this might have biassed the analysis in some way. This section considers that question in a little more depth. The table below shows the extent of imputation for the individual variables.

Description	Variable	Percentage of candidates with
		missing data
Educational variables		
Mean A-level grade	AG	14%
Number of A-levels taken	AN	14%
Non-Science A-levels	NONSCIA	14%
Resat A-levels or Highers	RESITS	0%
General Studies A-level taken	GSTAKEN	0%
General Studies A-level grade	GSGRADE1	75%
AS-levels taken	ASN	14%
Applicational variables		
Date of application	APPDATE1	0%
Previous application	PREVAPP	0%
Insurance choice	INSURNCE	0%
Less than five applications	LE4MED	0%
Six applications for medicine	MEDAPP6	0%
Gap year	GAPYEAR	0%
Demographic variables		
Sex	SEX1	0%
Mature applicant	MATURE	0%
Social class	SOCIAL2	6%
Ethnic origin	ETHNIC3	3%
Secondary school type	SCHOOL2	12%
Local applicant	PLOCAL/LOCAL	0%
Mean Scottish Highers grade	SHG	93%
Number of Scottish Highers taken	SHN	93%

Individual dummy variables (indicated by an M prefix) were calculated for each variable, with a value of 0 if the data were proper data and 1 if the data were an imputed mean. In addition a variable PMISSING was also calculated which described the percentage of missing data for each individual candidate. This had a mean of 13.45% (SD 5.88; range 0 - 40%). To assess whether imputation may have altered the results, the overall analysis was re-run, firstly including PMISSING, and then including individual missing value indicators. The analysis with PMISSING, shown below, indicates that PMISSING is indeed highly significant, with applicants having more missing data being less likely to be accepted.

		Variable	es in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4783	.0130	1354.750	1	.0000	.2296	1.6133
AN	.1775	.0377	22.1735	1	.0000	.0280	1.1942
NONSCIA	1988	.0481	17.0712	1	.0000	0242	.8197
RESITS	9924	.0692	205.7965	1	.0000	0891	.3707
GSTAKEN	1358	.0501	7.3616	1	.0067	0145	.8730
GSGRADE1	.2020	.0327	38.1026	1	.0000	.0375	1.2238
ASN	.0684	.0425	2.5896	1	.1076	.0048	1.0708
APPDATE1	4137	.0279	220.4626	1	.0000	0923	.6612
PREVAPP	.0495	.0648	.5836	1	.4449	.0000	1.0508
INSURNCE	1805	.0448	16.2668	1	.0001	0236	.8348
LE4MED	6545	.0592	122.3207	1	.0000	0685	.5197
MEDAPP6	0291	.0840	.1202	1	.7289	.0000	.9713
SEX1	.4827	.0367	173.2144	1	.0000	.0817	1.6205
MATURE	6216	.0679	83.8297	1	.0000	0565	.5371
SOCIAL2	1108	.0204	29.5552	1	.0000	0328	.8951
ETHNIC3	-1.0491	.0409	658.6289	1	.0000	1600	.3503
INDEPEND	0781	.0529	2.1771	1	.1401	0026	.9249
FEHE	7170	.0707	102.9197	1	.0000	0627	.4882
GRAMMAR	.1221	.0683	3.1918	1	.0740	.0068	1.1298
OTHSCHL	3645	.0565	41.6657	1	.0000	0393	.6946
PLOCAL	.2003	.0564	12.6239	1	.0004	.0204	1.2218
PMISSING	0533	.0041	169.0899	1	.0000	0807	.9481
Constant	1836	.2428	.5717	1	.4496		

The more detailed analysis includes all of the missing value indicators (although note that many are zero, or are confounded with other variables). The result is shown below:

		Variable	es in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4676	.0131	1277.105	1	.0000	.2229	1.5962
AN	.1760	.0379	21.5264	1	.0000	.0276	1.1924
NONSCIA	0691	.0486	2.0160	1	.1556	0008	.9333
RESITS	9989	.0693	207.8353	1	.0000	0896	.3683
GSTAKEN	.2184	.0451	23.4069	1	.0000	.0289	1.2441
GSGRADE1	.2115	.0328	41.5517	1	.0000	.0393	1.2356
ASN	.0812	.0424	3.6641	1	.0556	.0081	1.0846
APPDATE1	5503	.0291	356.4357	1	.0000	1175	.5768
PREVAPP	.0386	.0660	.3423	1	.5585	.0000	1.0394
INSURNCE	3182	.0463	47.2730	1	.0000	0420	.7275
LE4MED	9047	.0629	206.9331	1	.0000	0894	.4046
MEDAPP6	0840	.0865	.9422	1	.3317	.0000	.9195
SEX1	.4741	.0377	158.2677	1	.0000	.0780	1.6066
MATURE	5930	.0792	56.0222	1	.0000	0459	.5527
SOCIAL2	0816	.0209	15.2023	1	.0001	0227	.9216
ETHNIC3	8828	.0423	436.1834	1	.0000	1301	.4136
INDEPEND	.0259	.0543	.2281	1	.6330	.0000	1.0263
FEHE	3796	.0744	26.0298	1	.0000	0306	.6841
GRAMMAR	.4067	.0697	34.0414	1	.0000	.0353	1.5018
OTHSCHL	0732	.0636	1.3248	1	.2497	.0000	.9294
PLOCAL	1908	.0596	10.2635	1	.0014	0179	.8263
MAG	-1.3975	.0855	267.3277	1	.0000	1017	.2472
MSOCIAL2	0975	.0835	1.3630	1	.2430	.0000	.9071
METHNIC3	4683	.1099	18.1555	1	.0000	0251	.6261
MSCHOOL2	2349	.0866	7.3576	1	.0067	0145	.7906
MSHN	-2.1523	.2922	54.2468	1	.0000	0451	.1162
MSHG	7466	.2824	6.9901	1	.0082	0139	.4740
Constant	2.0366	.2702	56.8027	1	.0000		

Again, there is an indication that some candidates with missing values, particularly for A-levels, ethnic origin, school type, and Scottish Highers, are less likely to receive offers. However the important point about this analysis is that the main effects described earlier are all effectively

unchanged by taking missing value imputation fully into account. In particular the effect of ethnic origin has an effect size which is similar to that reported earlier. It can therefore be concluded that mean substitution is not substantially distorting the results of the analysis.

Information on the percentage of imputed values at each individual medical school is given in the table in Appendix 9.

UK and non-UK Home applicants: a note of caution.{tc ''UK and non-UK Home applicants: a note of caution.'' \l 3}

All of my previous published studies of medical student selection have restricted the analysis to individuals holding UK nationality. UCAS was therefore asked to provide data for this study only on UK nationals, and it was presumed throughout most of the process of analysis described elsewhere in the report that that was what had been provided. It eventually transpired however that UCAS had provided what they call 'Home' applicants, defined as individuals whose selfdescribed permanent residence is in the UK (excluding the Channel Islands and Isle of Man). All of UCAS's published statistics use this definition of 'Home'*, and for most practical purposes it provides a good basis for assessing the likely fee status of applicants⁺. However in the case of medicine there is an important difference from all other university subjects. For medicine, Government imposes strict quotas on the number of Overseas students (defined as non-EU nationals). There is therefore a potentially important discrepancy between UCAS's definition of Home, and Government's definition of Overseas as defined in relation to quotas. All non-EU nationals who declare their permanent residence as being in the UK will be included in the present data set as Home in UCAS's terms, but will also be subject to the governmental quota on number of overseas students. It should be noted that this problem of interpretation applies to all previous statistics published by UCAS and UCCA on patterns of university application and selection.

The discrepancy between the data requested and the data provided only became apparent to me in the middle of September, in part due to Admissions Tutors asking precisely what was the nature of the data set analysed. However no medical school specifically notified me of the inclusion in the data set of non-UK nationals on the basis of their checking of the data provided by UCAS. As soon as I realised the possible problem I asked UCAS for further information; however for technical reasons UCAS have informed me that it is not possible to provide it before this report is released.

The discrepancy between Home and EU provides a very specific problem for this report, since ethnic origin almost certainly correlates with nationality and place of permanent residence. It seems probable that the majority of non-EU national Home residents are non-white. It could therefore be argued that in the present data set non-EU nationals may seem as though they were being considered in competition with other applicants (particularly, White, Home, EU nationals), whereas in practice they would be compared with the very different and probably relatively larger pool of non-EU nationals. There is a very limited number of places available for that group, and hence a lower likelihood of receiving an offer. Such an effect might distort the apparent disadvantage of non-white applicants, and give impression that non-white candidates were disadvantaged, whereas they were actually taking part in an entirely separate competition. The question is whether that is a feasible scenario.

^{*} In recent years UCAS has distinguished Home, EU and Overseas.

⁺ Although strictly that remains the responsibility of higher education institutions.

Nothing can be said on the basis of the 1996/97 data directly. However, the 1991 data set¹⁰ which I collected has far more detailed information, and since it seems reasonable, at least until there is substantive evidence to the contrary, to assume that the nature of selection broadly comparable in 1991 and 1996/97, to use those earlier data to provide an assessment of the likely effects of this omission. The details of that analysis are provided in the footnote below^{*}. In their original published form the analysis specifically referred only to UK nationals¹⁰. To summarise the contents of the footnote, non-UK national ethnic minority home applicants are significantly *less* disadvantaged than UK national ethnic minority home applicants.

The importance of that analysis is several fold. Firstly, assuming that a similar pattern is found in the 1996/97 data, and there is no evidence that it will not be, then the inadvertent inclusion of non-UK Home applicants is extremely unlikely to have over-emphasised the disadvantage of UK Home non-white applicants, and if anything may have underestimated it. Although that result will probably apply in aggregate, it is possible that special cases may apply at individual medical schools, but that seems unlikely in the absence of further evidence. Nevertheless caution must be used in interpreting the results. Secondly, it is interesting to ask the mechanism of this significant difference. If, as is often argued, differences between white and non-white applicants reflect personal attributes which are systematically different, it seems unlikely that those differences should depend upon the nationality of the individual, rather than upon their ethnic group per se (an argument similar to that invoked earlier to do with surnames). It might seem tempting to argue that this difference is more compatible with a hypothesis of some form of discrimination, but such a conclusion should be adopted with great care, not least because the performance of ethnic minority candidates at final examinations has also been found to depend on nationality, and yet the weight of evidence suggests that the results are not compatible with a hypothesis of discrimination¹⁷.

To summarise this complex and technical argument, there is little doubt that it is regrettable that information was not available solely on UK nationals, and I must take responsibility for failing to notice the problem earlier (and it must be said that UCAS made a clear statement on some of the paperwork supplied with the data). The question of whether the discrepancy is likely to invalidate some or all of the conclusions, has though to be answered in the negative. Indeed if previous data are to be relied upon, and there is no reason to believe they should not be, then the inclusion of the non-UK Home applicants might to some extent have reduced the size of the disadvantage of ethnic minorities reported elsewhere in this report. The results reported here are therefore probably safe.

^{*} Of a total of 6901 applicants in the 1991 survey, 6279 were classified as Home on the basis of UCCA's Residential Category (UCCA variable HORC). Of these 6279 Home applicants, 774 (12.3%) were non-UK nationals. Many more of the non-UK nationals did not provide information on ethnic origin (414/774 (53.4%), compared with UK nationals (151/5505 (2.8%)). Nevertheless of those who did give their ethnic origin, 271/360 (75.3%) were non-white, compared with 1547/5354 (28.9%) of UK nationals who were non-white. Since other evidence (self-stated ethnic origin in our questionnaire rather than the UCCA form) suggests that about three-quarters of those not giving their ethnic origin to UCCA are non-white, we can be confident that a majority of non-UK Home applicants are likely to be non-white. The question then arises whether this is likely to explain the effects found. In order to do so, non-white non-UK Home applicants have to be particularly likely *not* to receive an offer.

A logistic regression was therefore carried out with the dependent variable being the receipt of one or more offers, and the predictor variables being mean A-level grade, number of A-levels, and ethnic origin. Analysis was restricted to those applicants with complete information on the measures. For all Home applicants (UK and non-UK) the disadvantage (log odds ratio) for non-white applicants was .7575 (SE .0778, odds ratio = 2.13x, N=5444). For UK Home applicants the disadvantage was .7122 (SE .0820, N=5146), and for non-UK Home applicants the disadvantage was .4207 (SE .3713, N=298). A formal check on the UK x white/non-white interaction found it was statistically significant (p=.0201). It is therefore clear that when included in the analysis non-UK Home applicants are *less* disadvantage than are UK Home applicants.

Analysis of selection at individual medical schools{tc ''Analysis of selection at individual medical schools''}

At this stage of the report, twenty one core background variables (plus gap year)^{*} have been identified and characterised and shown to be well behaved in an overall analysis of selection in the combined 1996 and 1997 data, and it has been shown that there are no substantial differences in the process of selection in 1996 and 1997 (although there are some minor changes in the distribution of background variables across the two years). It is now possible to proceed with the main part of the present analysis - comparison of selection at individual medical schools. This process is relatively straightforward to describe. The 'final model' with its 21 variables (or 23 variables at Scottish schools, where number and grade at Highers are also included) is fitted individually to the applicants at each of the (then) twenty-seven UK medical schools⁺, separately for the 1996 and 1997 applicants, with the outcome in each case being whether or not applicants received an offer at that particular medical school. As in the overall analysis, logistic regression was used with simultaneous entry of all 21 (or 23) variables, so that significance levels for each effect were assessed after taking all other background variables into account. This is relatively conservative but is unlikely to be seriously misleading in producing type I errors (i.e. suggesting that a background factor is a significant predictor of selection at a school when in fact it is not). There is inevitably a concomitant increase in the risk of type II errors, but that is probably a fairer way of handling complex social data upon which important decisions may be made, possibly about discrimination or the unfair advantaging of certain groups of applicants. The question of assessing statistical significance is subtle and complex and will be addressed in the next section. The handling of gap year was slightly different since information was only available on it for the 1997 applicants. It was therefore omitted from the main analyses and instead an additional analysis carried out for the 1997 data only, adding in gap year after the other 21 background variables.

Significance testing

{tc "Significance testing" \l 2}

Assessing statistical significance presents a number of problems when 21 factors are each being tested in 27 schools in two separate years, making a total of 1134 tests. The major problem is to avoid inflation of the alpha level (type I errors) due to repeated testing. Fortunately a straightforward solution is available because of the fact that identical analyses have been carried out in two successive and independent years (and a preliminary analysis of the overall data, described in this report has shown that selection is equivalent in the two years, with no interactions terms between effects and year). The essence of the present method is that a result is

^{*} At Scottish schools, the number of Highers and mean grade at Highers are also used in the analysis.

⁺ Medical education in London is currently in a state of flux, which can be confusing to those not familial with the details. In 1996 and 1997 Imperial College School of Medicine was, in practice, the old St. Mary's Hospital Medical School, which had been independent in 1991; however applicants in 1998 applied to an Imperial College School of Medicine which had by then incorporated Charing Cross and Westminster Medical School. In 1996 and 1997, University College School of Medicine had previously in 1991 been University College and Middlesex School of Medicine, and in August 1998 became Royal Free and University College School of Medicine, although for the immediate future the selection systems of University College and the Royal Free are remaining separate. The medical school at Queen Mary and Westfield College in 1996 and 1997 was formed from the basic medical science departments of QMW, along with St. Bartholomew's Hospital Medical School and the Royal London Hospital School of Medicine which were independent in 1991. The United Medical and Dental Schools in 1996 and 1997 had in 1991 been Guy's Hospital Medical School and St. Thomas's Hospital Medical School which subsequently merged as UMDS; in 1998 UMDS merged with King's College Hospital School of Medicine and Dentistry as The Guy's, King's College and St Thomas' Hospitals' Medical and Dental School all medical schools had remained unchanged in name, location or basic structure across the time scale of these studies.

considered as significant if it is not only significant in one year but is also significant in the other year as well. A nominal alpha level of 0.01 has been chosen. In one of the years it would therefore be expected that by chance alone 5.67 of the 567 tests would be significant on such a criterion. Of those 5.67 chance results however only 0.0567 would also be significant when tested on the independent data from the second year. Adequate control of alpha inflation has therefore been produced. In practice a minor modification was introduced so that the criterion for significance was either that a nominal level of 0.01 was attained on each occasion, or a level of 0.05 was attained on each occasion and the geometric mean of the two nominal levels was less than 0.01 (e.g. a combination of p=.05 and p=.002 is acceptable). The satisfactory nature of the control of alpha inflation is shown by the fact that if results are indeed due to chance alone, then on 50% of occasions they will be of opposite sign in the two years. In the present analysis, of 150 effects deemed significant, in only two cases (1.3%) was the direction of the effect different in the two years (and these effects were omitted from the results)^{*}. The significance testing for the effect of a gap year could not be carried out using the above procedure as information was only available for one year. A nominal alpha level was therefore set at 0.01; the actual levels achieved in the five significant reported results are .0060, .0063, .0083, .0002 and <.0001.

In relation to the process of selection at an individual medical school, the significance levels described above are conservative. For a single school, only 21 tests are being carried out each year. Even if a conventional alpha level of 0.05 is used in that situation then only about 1 of the 21 tests will be significant in a single year. The likelihood of that same test being significant in a second year, by chance alone, is about 0.05, resulting in adequate control of the alpha level for that one school alone. If only one school is being looked at then probably the best criterion of significance for any single variable is that the effect reaches 0.05 in both years and that the effect is in the same direction in both cases.

Effect sizes{tc "Effect sizes" *l* 2*}*

In medical statistics it is generally felt to be desirable to present effect sizes and confidence intervals, in addition to or instead of significance levels. In the present study the sheer quantity of parameters being estimated precludes any straightforward presentation of effect sizes and confidence intervals. However appendix 10 presents the important parts of the SPSS output which allows effect sizes and confidence intervals to be examined.

The differences between medical schools{tc "The differences between medical schools" $\label{eq:linear} l 2$ }

Applicants to different medical schools differ in many ways, and in part it is these differences which confound any simple study of entrants (as in some previous studies^{18,19}) and the presumption that such differences must reflect differences in selection processes. Appendix 9 provides summary statistics (mean or percent) for each of the twenty-two variables being used in the comparison of individual schools. Neither standard errors nor formal comparisons are provided — they are readily calculated in SPSS. They are also of little major relevance to the present study, where the emphasis is upon the process of selection, and a comparison of candidates to whom offers are made with those to whom offers are not made.

Predictors of the making of offers, and hence of the process of selection, can be seen in Appendix 10, which provides an abbreviated version of the SPSS output, providing just the variables in the equations, separately for the 1996 and 1997 applicants, with one medical school to a page for ease of reading.

^{*} For the record, these were MATURE at Bristol and AN at Edinburgh.

Appendix 11 summarises the size of the effects on variables which are significant at the individual medical schools. To ensure readability, standard errors and confidence intervals have not been included, but all are available in appendix 10.

The significance of differences between medical schools{tc "The significance of differences between medical schools" \l 2}

Although the analyses described above provide suggestive evidence that there are differences between medical schools in the disadvantage of various groups of applicants, it could be argued that there will inevitably be differences between schools (it is after all highly unlikely that all will have precisely identical effects on all measures). The question arises therefore of whether the differences are statistically significant. Perhaps the most contentious result in the present data will concern differences between schools in the relative disadvantage of ethnic minority applicants, and the remainder of this section is restricted to an analysis of that issue. In statistical terms the question is equivalent to asking whether there is a medical school x ethnic origin interaction. If so, then schools differ in the extent of the disadvantage. There are certain problems in assessing this, of which the most important is that if one looks for an interaction at the application level (i.e. the 90,000 applications), then the 90,000 applications are not statistically independent, coming from only 19,000 candidates. This has been handled here by analysing the 90,000 applications but weighting each by a factor of 0.2 (i.e. equivalent to a conservative estimate of only 18000 candidates). The analysis below shows that result. The ethnic origin x medical school interaction is highly significant (chi-square = 1322.51, 26 df, p<<.0001). It can therefore be safely concluded that schools do indeed differ in the extent to which ethnic minority applicants are disadvantaged.

Variables in the Equation								
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)	
AG	.3973	.0164	586.7531	1	.0000	.1679	1.4878	
AN	.1450	.0403	12.9469	1	.0003	.0230	1.1561	
NONSCIA	.0515	.0495	1.0827	1	.2981	.0000	1.0528	
GSTAKEN	.0728	.0457	2.5351	1	.1113	.0051	1.0755	
GSGRADE1	.1893	.0355	28.4138	1	.0000	.0357	1.2084	
ASN	.0951	.0422	5.0889	1	.0241	.0122	1.0998	
APPDATE1	4673	.0305	235.1714	1	.0000	1060	.6267	
PREVAPP	5444	.0684	63.3253	1	.0000	0544	.5802	
INSURNCE	2447	.0484	25.5586	1	.0000	0337	.7829	
LE4MED	3711	.0789	22.1469	1	.0000	0312	.6900	
MEDAPP6	3534	.0961	13.5226	1	.0002	0236	.7023	
SEX1	.3023	.0395	58.6579	1	.0000	.0523	1.3530	
SOCIAL2	0855	.0232	13.5534	1	.0002	0236	.9181	
ETHNIC3	5267	.0508	107.5867	1	.0000	0714	.5906	
INDEPEND	0488	.0537	.8238	1	.3641	.0000	.9524	
FEHE	6592	.0903	53.2736	1	.0000	0497	.5173	
GRAMMAR	1458	.0673	4.6932	1	.0303	0114	.8643	
OTHSCHL	4975	.0603	68.1526	1	.0000	0565	.6080	
LOCAL	.3938	.0409	92.5194	1	.0000	.0661	1.4826	
SHG	1.5012	.1110	183.0618	1	.0000	.0934	4.4871	
SHN	.4104	.0884	21.5711	1	.0000	.0307	1.5075	
ETHNIC3 * MEDSCHL		1	322.509	26	.0000	.2475		

Acknowledgments{tc ''Acknowledgments.''}

I am very grateful to the Council of Heads of Medical Schools, to their Chairman and Executive Secretary, and the Deans of individual medical schools for allowing me access to these data prior to full publication. I also thank Mr Richard Coleman and Ms Liz Viggars of UCAS and Mr Michael Powell of CHMS for their assistance in the analysis of the data and the preparation of the results. Dr Sheila Gore provided a critical overview of the statistical analysis, and contributed a number of extremely helpful suggestions. Deans and Admissions Tutors at several medical schools also provided very useful comments on an earlier draft of this report, and their care and attention to detail is much appreciated, and has undoubtedly clarified several aspects of this report.

Appendices {tc "Appendices"} Appendix 1: Background to this report.{tc "Appendix 1: Background to this report." \l 2}

Previous studies{tc "Previous studies" \l 3}

The selection of medical students has long been controversial²⁰⁻³², with disagreement over the criteria employed by medical schools. Schools have also differed in the methods of selection that they have used, in particular about two thirds of them choosing to interview, and the remaining schools not interviewing the majority of their entrants.

Controversy began again in the mid-1980s with explicit claims that medical schools were discriminating against women applicants and against ethnic minorities¹⁸. Such claims were methodologically flawed, not least because they did not compare applicants with entrants; instead they suggested that because the proportion of female or minority *entrants* to schools showed significant differences, then that must reflect discrimination (the implicit, untested, and erroneous inference being that female and minority applicants applied in similar proportions to all medical schools).

In 1984 Professor Peter Richards and I published our first cohort study of medical student selection, looking at a large cohort of applicants for entry in 1981 ^{12,33,34}. After the publication of other data on the ethnic origin of students assessed using surnames, and in response to a published request ⁶, we re-analysed our data and found that applicants with non-European surnames did indeed seem to be disadvantaged.

Further controversy appeared with reports of explicit discrimination against ethnic minority and female medical school applicants at St George's Hospital Medical School. In this unusual case the accusation of discrimination was readily proven by the fact that the selection process was instantiated within the code of a computer program. The outcome was a formal investigation and report by the Commission for Racial Equality ³⁷.

In 1989 we published the results of a second cohort study of medical student selection, this time looking at applicants for entry in 1986¹⁰. Better measures of ethnic origin, which was now self-classified, rather than inferred from surnames, coupled with a larger sample size, and better control of background variables allowed for a more robust study. In particular in our previous study we had realised that ethnic minority candidates differed systematically from White applicants on a number of measures, and in particular they tended to have lower O-level and A-level results, to apply later, and to have applied previously, all of which were independent correlates of a lower likelihood of selection. Nevertheless despite taking these other measures into account, it was clear that at all levels of A-level achievement, non-White applicants were significantly less likely to be accepted than White applicants.

Although our study of the 1986 cohort left little doubt that non-White applicants were significantly less likely to be selected than equivalently qualified White applicants, that itself was not proof of discrimination in a technical sense, and was perhaps best described as 'disadvantage'. The problem was that non-White applicants might also have differed systematically from White applicants in some other relevant factors which had not been systematically assessed (perhaps, attitudes, motivation, or whatever).

Our survey of the 1991 entry cohort, which was substantially larger than the 1981 and 1986 cohorts had several design features which allowed a much more detailed analysis of the issues, and in particular provided data which gave better leverage on the problem of whether the lower rate of selection of non-White applicants was disadvantage or was better described as discrimination in the sense used legally. The 1991 cohort was carried out with the co-operation of five medical schools^{*}, and, because applicants could apply to five medical schools, included 70% of all UK medical school applicants and entrants. In addition we used as our outcome measure not entry to medical school, but offers made by each individual medical school to which an applicant had applied. This gives more statistical power, and also allows the study of selection at each individual medical school. Additionally, and crucially, it also circumvents the known problem that when applicants hold two or more offers then instead of medical schools selecting applicants, it is applicants who are selecting medical schools to others could be confounded with selection by schools and manifest as apparent discrimination by schools. The conclusions of the 1991 study were as follows:

- i. Non-white applicants, as in previous studies, were significantly less likely to receive offers than white applicants, after taking demographic and educational background variables into account.
- ii. There were no differences between different ethnic minority groups, but all were significantly less likely to receive offers than White applicants.
- iii. The detailed questionnaires we had given to applicants allowed us to ask whether ethnic origin, *per se*, was the primary predictor of selection, or whether other highly correlated variables were better predictors. In particular we assessed whether applicants had a non-European surname, whether they had been born in the UK, whether their parents had been born in the UK, whether their grandparents had been born in the UK, and whether English was their first language. The results were clear: the best predictor was actually having a non-European surname, and none of the other factors were significant after it was taken into account. In contrast, non-European surname provided additional predictive power after ethnic group had been taken into account.
- iv. The effect of having a non-European surname upon receiving an offer was studied separately at all UK medical schools, and there were found to be statistically significant differences between the schools, about half showing no significant evidence of discrimination, whereas in the other half applicants with non-European surnames were significantly less likely to receive an offer.

^{*} Our 1981 and 1986 cohorts consisted of applicants applying for admission to St. Mary's Hospital Medical School (now part of Imperial College School of Medicine). However applicants applied (then) to six medical schools in total, and our studies looked at the outcome of their application to *all* schools, and therefore studied selection nationally.

Together these results provide a compelling case that the reduced likelihood of non-White applicants receiving an offer is, at least in part, the result of actual discrimination. If the disadvantage instead reflected real differences in unmeasured background variables between ethnic groups (which may also exist as well), then one would expect *a*) differences in the rate of selection of different ethnic groups, and *b*) selection to be predicted better by ethnic group than by surname, rather than the converse. Finally, if the poorer performance by non-White applicants reflected genuine differences in attitude, motivation, or whatever, then their likelihood of selection should be reduced at *all* schools to which they had applied. That it was only some medical schools where there were differences makes discrimination the most reasonable explanation of the results.

The 1991 cohort study also provided a detailed analysis of the locus of discrimination, using the powerful statistical technique of path analysis. It studied those applicants who apply before taking their A-levels (who are the majority). Non-white applicants were principally suffering because teachers' predictions (estimates) of high A-level grades were being discounted relative to the same predictions in White applicants. On that basis we suggested that it might be better either if A-level grade estimates (predictions) were removed from application forms, or, instead, selection were a post-A-level process.

At the same time that our 1991 cohort study was published, the same issue of the British Medical Journal contained another article which also claimed that there was discrimination against ethnic minorities in the process of selection of medical students¹⁹. That study used data obtained from UCCA, but suffered a number of serious methodological problems. In particular the outcome measure was *entry* to a school, and not receipt of an offer, which means that selection of students by schools and selection of schools by students are confounded. Additionally there was inadequate control of the important confounding variable of A-level grade, and no attempt at all to control for other confounding variables, such as date of application. In a re-analysis we concluded that the data did not show convincing evidence of disadvantage, in so far as it was possible to tell ³⁸. The primary reason for carrying out that re-analysis on our part was the fact that the Esmail etal study had published the names of medical schools which it had identified as discriminating against minorities, and, disturbingly, there was little correlation between their list and ours (we had published effect sizes but had not explicitly named schools). Clearly if discrimination is occurring then it ought to be found reliably and consistently in different studies using similar data. The lack of cross-validation made it difficult to know precisely what was going on, and a further study to be imperative.

In appendix 3 to this report I compare our 1991 cohort, Esmail's 1992 cohort, and the present 1996 and 1997 cohorts in the effects they find at each medical school. To summarise the appendix, our 1991 effects correlate well with the 1996 and 1997 effects, and to the same extent that the 1996 and 1997 effects correlate with each other. In contrast Esmail's 1992 effects show a minimal correlation either with our 1991 data and inconsistent correlations with the present 1996 data, although there is some correlation with the 1997 data. It is probably premature erroneous to make a final judgement on Esmail et al's analysis of the 1992 data, but there are grounds to believe that they may be erroneous in their conclusions, as previously suggested ³⁸. Certainly they disagree with the conclusions of our analysis of the 1991 data, and that discrepancy requires explanation.

Chronology of the present report {tc "Chronology of the present report" \13}

On February 22nd 1998 a meeting of the Council of Heads of Medical Schools discussed the question of press reports concerning possible discrimination at some medical schools against applicants from ethnic minorities. That afternoon I was contacted by Professor Robert Souhami of UCL, on behalf of the CHMS, who discussed the possibilities of carrying out a survey using data provided by UCAS. I prepared a document which was submitted to the CHMS a few days later, and which noted amongst other things a briefing document originally prepared in confidence by CHMS for Ministers, which stated:

"that there should not be any impression that medical schools are not prepared to be open about their admissions policies and practices and to place all relevant, accurate and up to date statistical data in the public domain". *Jan 1998*.

My document made it clear that it was not easy to carry out an analysis using just UCAS data, in particular because not all relevant variables were available in the UCAS data, especially GCSE grades (and, implicitly, estimated A-level grades).

CHMS convened a meeting of Admissions Tutors and Deans on 1st April at which I made a presentation on the question and emphasised that an ideal study would have much information that was not presently available in the UCAS data, in particular GCSE grades, etc, plus information on the process of selection, including interviews and the judgements of shortlisters, etc. (including, implicitly, judgements of non-academic characteristics). The meeting agreed that it was necessary to go ahead with an analysis of those data which were available, however imperfect they might be. In particular it was emphasised that there was a commitment already in place within CHMS to put the full, relevant data on the UCAS web-site, and that it was desirable if possible to have an analysis of the data and a formal report of the main findings before the data were published, to make public interpretation easier. It was hoped at that time to have completed the analysis and to be able to put the information on the web by June/July, which set a very tight time-table indeed.

Data were provided by UCAS at the end of May, and by mid-June I had carried out a first analysis of the data. However at this time medical schools were providing a number of comments on the data they had also been sent about their individual selection processes, and it became clear that a number of problems had been found in the data sets. The decision was taken by CHMS that publication of the data would need to be delayed until September/October, and my analysis was then put on hold until a definite set of the data could be generated, which I received on July 24th. Some additional problems were then found with the new data set, but these were resolved during August, and I wrote a first draft of this report before going on leave. The draft report was circulated to medical schools during my absence. I returned in early September and received a number of useful comments and criticisms. Most important was that it became obvious that I had not carried out an optimal analysis for those applicants with Scottish Highers, and these data were therefore re-analysed. It had also been decided by this time that publication of the report was scheduled late October, with subsequent release of the data in the days following.

The draft report was discussed at a meeting with Admissions Tutors on September 15th, and at a meeting of the full Council of CHMS on 18th September. These meetings resulted in a number of important points being raised, and I agreed to incorporate some additional analyses into my report, in particular repeating the main analyses to exclude mature and resit candidates (for whom conditions are often different), and to look at the interaction between sex and ethnic origin, plus a host of other minor changes. It was also confirmed that as an independent academic researcher I would be free to submit a paper on the data to a scientific journal.

Much criticism was expressed at both meetings that the analyses were potentially flawed because of the failure to include GCSE grades, estimated (predicted) A-level grades, information on interviews, and on non-academic characteristics. Although undoubtedly the inclusion of those measures, would have improved the analysis (and in particular would have allowed the locus of disadvantage to be more clearly identified), I expressed the view that they were unlikely substantially to modify the conclusions. It is also apparent from this chronology that the nature of the problem has always been present since the original decision was made to publish the raw data, and to carry out the analysis, as was made clear in my initial report, and my presentation on the 1st of April. In so far as the analysis of the 1991 cohort had measured some of those additional variables, and in particular for GCSE grades and estimated grades, they had made no substantive difference to the conclusions, and since it seemed unlikely that the process of selection had changed dramatically since 1991 (and the analyses suggest that the indices of disadvantage show a similar pattern across schools in 1991 and 1996/7) then the conclusions of the present report, including amongst others that applicants from ethnic minorities are probably disadvantaged when they apply to some medical schools, is justified.

Appendix 2: Fairness and equality in selection in relation to disadvantage and discrimination.{tc "Appendix 2: Fairness and equality in selection in relation to disadvantage and discrimination." $\label{eq:linear}$

In discussing medical student selection there are a number of issues which frequently cause confusion and which it is important to clarify. Some of these issues are particularly acute in relation to the issue of possible disadvantage and/or discrimination against ethnic minorities or against male or female applicants. They are gathered together here to make the issues clearer.

Disadvantage, Discrimination, and Racism. {tc ''Disadvantage, Discrimination, and Racism.'' \l 3) These terms are used with some care in this report. Racism is a set of attitudes^{*} or ideologies³⁹, and as attitudes, beliefs and ideologies have not been measured or assessed, the term is not used elsewhere in the report, and no further comment can be made, except to stress that logically it is possible to have racism in the absence of discrimination, and discrimination in the absence of racism. Disadvantage refers to the situation in which an identified group of applicants performs less well relative to another group of applicants, all other things being equal; it is assessed entirely in terms of a behavioural outcome. Applicants are not disadvantaged if they are less well qualified. *Discrimination*⁺ can be used in two related senses. In a legal sense, in the UK, discrimination applies when a court has declared that it has occurred, as the result of a formal investigation of the Commission for Racial Equality (CRE) or the Equal Opportunity Commission (EOC). The CRE makes clear that discrimination occurs when a decision is made on the basis of a candidate's skin colour or ethnic origin, rather than their aptitude, and makes clear that it relates to "what someone does, not what they think". To a social scientist, discrimination is related to this definition, but is an inference about a social process, based on evidence (and for instance the inference of discrimination is strengthened when, as in a previous study, we found that it was surname rather than ethnic origin *per se* which predicted medical school entry). Disadvantage is an emotionally neutral term, whereas discrimination is much more emotionally laden, not least because of its legal implications. It must be emphasised that the present study on its own cannot in any way establish the presence of discrimination (although it might provide what the CRE calls 'prima facie evidence of racial discrimination); it does however document the extent of disadvantage after taking into account a number of important background variables. The existence of discrimination might however be inferred as in all scientific research by combining the present data with other studies of related areas, just as inferences in medicine and science are rarely based on a single definitive study but from the overall pattern of evidence accumulating from different sources. Use of the term disadvantage as description does not imply that no further analysis is necessary, since an explanation of the mechanism of the disadvantage is necessary, and discrimination must be one hypothesis which must be included in the analysis.

^{*} The web-site of the Commission for Racial Equality says that "Racism is the belief that people from some races are innately superior to others, because of things like the colour of their skin, their ethnic origin, or the country that they come from". (http://www.open.gov.uk/cre/law.htm)

⁺ The web-site of the Commission for Racial Equality (see previous footnote) states that "Racial discrimination occurs when someone is treated less favourably because of their skin colour, or their racial, national or ethnic origin. Discrimination occurs because of what someone does, not what they think".

Description, explanation and justification.{tc ''Description, explanation and justification.'' \l 3} The description of disadvantage is neutral. The explanation involves finding an adequate account of the mechanisms underlying it. The justification of the mechanisms is a moral process which requires an assessment of legal issues concerning justice and fairness. Disadvantage may be adequately explained by analysing underlying mechanisms and still be unjustifiable, either in law or morally. The absence of an explanation cannot justify the continued presence of disadvantage. The existence of disadvantage is necessarily a temporary state; it might result eventually in the measurement of additional valid predictors and co-variates of outcome which mean that statistical analysis then reveals that candidates in a particular group are no longer disadvantaged; or alternatively additional evidence might be provided that discrimination is indeed the underlying mechanism, and the mechanism of the discrimination then needs to be removed.

The validity of selection criteria.{tc "The validity of selection criteria." \l 3} The phrase "all other things being equal" implies that the 'other things' are known to be valid selection criteria. A criterion is valid for selection if it can be shown to be assessed reliably and is a predictor of eventual performance in the field which is being selected. American courts have recently become much stricter on this issue, and it is not sufficient to argue merely that a characteristic *might* seem to be sensible or reasonable, but it must instead be shown to related to eventual job performance. The question of other criteria is particularly relevant in the UK to the problematic area of indirect discrimination.

Direct and indirect discrimination. {tc "Direct and indirect discrimination." \l 3} Direct discrimination is relatively straightforward, a decision being made explicitly on the basis of ethnic origin, and in medical education it was described by the CRE in its investigation into St George's in the 1980s⁴⁰. Indirect discrimination is more subtle, and occurs when a selection criterion is used which affects candidates from one group more than another and the criterion cannot be justified. Applicants from ethnic minorities do have lower A-level grades on average than White applicants, but that is not indirect discrimination as long as it can be demonstrated that A-levels are a valid outcome predictor (and they do indeed predict performance in basic medical science and clinical examinations in medical school⁴¹). GCSE grades are more problematic. Applicants from ethnic minorities do seem to have lower GCSE grades relative to the A-level grades they will eventually attain than do white applicants¹⁰. Any selection process which emphasises GCSE grades over attained A-level grades will therefore tend to disadvantage non-white applicants. As long as GCSE grades are a valid predictor of eventual outcome, that is justifiable. However if data on basic medical science and clinical examination performance suggest that GCSE grades do not provide any additional prediction of exam performance over and above that provided by A-level grades it might be argued that use of GCSE grades in selection could be indirectly discriminating against non-white applicants.

Non-academic criteria, and other unmeasured factors.{tc "Non-academic criteria, and other unmeasured factors." \l 3} No study can measure everything that might possibly be relevant to a process, there being an infinity of measures which might be important in explanation. The explanation of disadvantage might invoke the assessment of motivation, interest, commitment or many other non-academic factors, which may well differ between white and non-white applicants. However if they are not measured systematically or they are not shown to be valid predictors of professional performance, then invoking them as a justification of disadvantage is likely to be a difficult process. In the words of Hughlings Jackson, "absence of evidence is not evidence of absence".

Stated selection policies.{tc ''Stated selection policies.'' \l 3} It is sometimes argued that as long as an institution states clearly to applicants that its selection policy requires candidates to have a particular qualification (say, GCSE grade A in Maths) that it is then justifiable to reject candidates without that qualification. It is not entirely clear that that is so. Once again, the problem arises a), in general, whether the criterion is valid as a predictor, and if it is not then it could be vulnerable to challenge; and b), specifically in relation to indirect discrimination, whether a particular ethnic group might find it difficult to achieve the criterion. It could also be argued that many stated policies on selection do not provide all of the information that an applicant might require²³.

Population proportions. *(tc "Population proportions." \l 3)* Comparison of the proportions of ethnic groups in medical school applicants, university applicants in general, and the age-related population shows clearly that applicants from ethnic minorities are over-represented relative to population proportions. That however can be of no relevance to the presence of disadvantage. UK law does not allow 'social engineering', or 'positive discrimination' to try and make groups of entrants equivalent in proportions to any reference group. Instead the law requires that *individuals* are treated equivalently. The fact that many members of one sub-group choose to apply for a particular career whereas members of another subgroup choose not to apply for that career is a reflection of their freedom to apply as they wish and is irrelevant to the explanation of disadvantage. The law in the UK is substantially different from that of the United States in this respect.

Individual versus group characteristics. It is sometimes claimed that as a group certain types of individuals do less well or better on some outcome measure. That may well be true and is of some interest sociologically. It does not however provide a justification for disadvantage. To take a pertinent example, it is a commonplace in the literature on doctor-patient communication to find that females tend to have better communication skills than males. That alone however cannot provide a justification for females being more likely to be made offers. It may however be justifiable if communicative ability were assessed individually in applicants, using a test that is reliable and valid, and high scorers of either sex were then selected. Selection is then occurring based on the individual's attributes not the group's attributes. It should also be noted that such selection would act in the long run to reduce differences in communicative ability between male and female doctors, whereas the mere admission of fewer men would increase the aggregate communicative ability of the profession but would not alter the difference between males and females in the profession.

Over-emphasis upon A-levels.{*tc* ''**Over-emphasis upon A-levels.**'' *l* **3**} The argument has been made that there is a strong case for reducing the emphasis placed upon A-levels in medical school selection, and that therefore any statistical analysis which equates "well-qualified" with "high A-level grades" is inevitably flawed. That does indeed seem to be the case⁴², and as long as other measures are available of "well-qualified" then the argument is valid. However it should be remembered that since the non-White applicants in this study have overall lower A-level grades than White applicants, that any system which makes less emphasis on A-level grades would tend to expect even higher proportions of non-White applicants to receive offers, and hence the extent of disadvantage would be greater than that reported here.

Estimated (predicted) A-level grades. {tc ''Estimated (predicted) A-level grades.'' \l 3} The first stage of selection in many medical schools relies on teachers' estimates of the A-level grades an applicant will achieve. This is a difficult process to justify, given that such estimates are known to be biassed (teachers consistently over-estimate in all studies reported), and are not particularly reliable (the correlation with eventual grade is relatively poor) 43 . More problematic is that estimated grades appear to provide no useful information over and above actual achieved A-level grades in predicting medical school performance, and there is the real possibility that in rejecting an applicant because of poor estimated grades, the prophecy becomes self-fulfilling, in what educational psychologists call the Pygmalion effect (if you tell someone they are a failure then that is demotivating and subsequently they are likely actually to fail). Even if disadvantage can be *explained* in terms of differences between ethnic groups in estimated grades^{*}, it is still difficult to *justify* such a criterion, since in effect it is to substitute the gold standard of A-level grades underwritten by the careful, reliable processes of the A-level examination boards, with the base metal of an unreliable, potentially biassed guess made by a single person a year or so before examinations are actually taken. If disadvantage is indeed occurring because of the need to use estimated grades rather than achieved grades then the desirable course of action would seem to be to move to a system of post-A-level application, rather than to argue for the primacy of estimated grades.

The imperative to reduce the number of applications. {tc ''The imperative to reduce the number of applications." \13} Admissions tutors have pointed out that they are under extreme pressure to reduce the number of applications they receive to manageable proportions, as it is not possible, for instance, to interview any but a fraction of the total number of applicants. That argument is well accepted, and there is indeed a problem to be solved. However it cannot be a justification for putting undue emphasis upon GCSE grades, estimated A-level grades, or whatever if they are possibly resulting in indirect discrimination. Several solutions are possible, one of which is to adopt some variant of the Dutch model of a lottery; although it is clearly better to use validated selection, a lottery at the least has the advantage of being fair, and has reasonable precedents (including the selection of conscripts in the US in the Vietnam War). Better perhaps would be to reduce the sheer mass of applications to which schools are subject (particularly since although each school receives masses of applications, about 40% of applicants will eventually enter medical school, and these are probably about 70% of all of the qualified pool). The selection ratio is therefore high at the level of the school but low at the level of the individual applicant. If applicants could make fewer applications (say, to three schools), and applicants were qualified (i.e. the system was post-A-level) then institutions could afford to interview the majority of their candidates, as schools, candidates and public would probably find desirable.

^{*} The argument has been made to me that the estimated grades provided by schools are themselves biassed in the case of applicants from ethnic minorities, and that the locus of any problem is at the level of the schools, not the medical schools. I do not find this explanation convincing, and it is inconsistent with data from the 1991 selection cohort which found that estimates of A-level grades were equally accurate in white and non-white applicants, but that the difference arose because medical schools discounted high estimated grades in non-white applicants, relative to the same estimated grades in a white applicant.

Appendix 3: Comparison of disadvantage of ethnic minorities at individual medical schools in 1991, 1992, 1996 and 1997.{tc "Appendix 3: Comparison of disadvantage of ethnic minorities at individual medical schools in 1991, 1992, 1996 and 1997." \l 2}

In 1995 two papers were published in the *British Medical Journal* 13,19, each purporting to show disadvantage in ethnic minority applicants applying to medical schools, and estimating the extent of the disadvantage in each UK school. Unfortunately there was little agreement between the pattern of disadvantage claimed in the two studies (although that was not obvious to others since in our own paper¹³ we left medical schools anonymised). In the introduction to this report I have summarised the methodological problems with the Esmail paper¹⁹, as we did at the time in the *BMJ*³⁸. Here I look at the findings of the two studies in detail, and compare them with the 1996 and 1997 data.

The table below summarises the effect sizes for the disadvantage of ethnic minorities in the four separate sets of data (see note at end of appendix on medical school identities). Note that the 1991 study used non-European surname whereas the others used the UCAS ethnic origin, and that the 1991 study took slightly different background variables into account from the 1996 and 1997 studies (the 1992 study took only A-levels into account, and that only on the basis of stratification into two groups).

	1	991 Stu	.dy	1	992 sti	ıdy	19	96 coho	rt	1	997 coh	ort
SCHOOL	(Mc	Manus e	t al)	(Es	mail et	; al)	(this	study)	(ETH96)	(this	study)	(ETH97)
	011-	(NES91		011-	(ESM92)	011-	T		011-	T	
	vadas	Lower	upper	vaas	Lower	Upper	vaas	Lower	Upper	vaas	Lower	Upper
	Iatio	CT	CT CT	Iacio	CT CT	90% CI	Iacio	CT	00°	Iacio	95% CT	95% CI
A20. Aberdeen	7 54	2 37	23.96	0 72	0 18	4 17	1 73	1 07	2 80	1 95	1 14	3 33
B32. Birmingham	1 42	0.90	23.90	1 88	1 12	3 26	1 90	1 42	2.00	1 23	0.87	1 73
B78. Bristol	1 07	0.50	1 82	1 22	0 66	2 45	1 15	0.82	1 61	1 23	0.07	1 73
CO5: Cambridge	1 70	0.05	3 06	1 88	1 21	2.45	1 41	1 00	1 99	1.25	1 32	2 63
C40. CXWMS	1 90	1 33	2 70	1 93	1 30	2.95	2 31	1 75	3 05	2 16	1 61	2.05
D65: Dundee	3.90	1.81	8.37	1.76	0.80	4.47	1.94	1.23	3.06	1.69	1.09	2.62
E56: Edinburgh	1.45	0.85	2.46	0.64	0.37	1.09	1.47	1.02	2.11	1.40	1.00	1.95
G28: Glasgow	2.29	1.15	4.55	1.81	0.51	7.72	2.47	1.49	4.08	1.61	0.99	2.62
I50: Imperial College	1.34	0.92	1.94	2.03	1.20	3.56	2.31	1.72	3.09	2.80	2.02	3.88
K72: King's College	1.90	1.26	2.86	0.99	0.61	1.62	1.81	1.31	2.50	2.13	1.54	2.94
L23: Leeds	1.70	1.19	2.42	1.61	1.01	2.60	1.85	1.45	2.35	2.45	1.91	3.15
L34: Leicester	2.10	1.23	3.56	1.06	0.64	1.79	1.70	1.31	2.21	1.49	1.17	1.91
L41: Liverpool	1.39	0.87	2.23	0.84	0.52	1.39	3.62	2.26	5.78	1.70	1.26	2.29
M20: Manchester	1.99	1.35	2.95	0.83	0.59	1.18	1.61	1.29	2.03	1.49	1.19	1.87
N21: Newcastle	0.76	0.46	1.27	1.46	0.73	2.99	1.29	0.86	1.95	0.97	0.69	1.37
N84: Nottingham	1.15	0.72	1.84	1.98	1.04	4.14	1.66	1.14	2.41	2.46	1.67	3.62
033: Oxford	1.23	0.54	2.81	1.63	0.86	3.26	1.44	0.82	2.54	2.84	1.51	5.34
Q50: QMW	1.75	1.09	2.80	1.72	1.09	2.82	1.98	1.50	2.61	2.42	1.87	3.12
Q75: Queen's, Belfast	7.69	0.75	79.23	2.71	0.15	159.00	4.22	1.22	14.57	3.85	1.04	14.26
R60: Royal Free	1.38	0.91	2.08	1.63	0.86	3.26	1.96	1.39	2.76	1.28	0.93	1.76
S18: Sheffield	1.82	1.23	2.70	1.55	0.92	2.69	1.80	1.32	2.45	1.97	1.49	2.60
S27: Southampton	1.14	0.66	1.97	1.19	0.63	2.41	2.23	1.52	3.27	1.45	1.00	2.11
S36: St. Andrews	1.72	0.38	7.76	3.83	1.12	20.53	2.32	1.35	3.95	3.01	1.76	5.15
S49: St. George's	1.17	0.78	1.77	1.85	1.23	2.83	1.47	1.07	2.04	1.91	1.29	2.81
U60: UMDS	1.86	1.31	2.65	0.96	0.65	1.40	2.06	1.61	2.65	2.46	1.90	3.19
U80: UCL	2.03	1.52	2.73	1.50	0.98	2.35	2.63	2.04	3.40	2.26	1.77	2.88
W10: Wales	1.03	0.61	1.75	1.79	1.00	3.38	1.72	1.22	2.44	1.74	1.09	2.76

The similarity of the estimates at different schools in the four studies can be calculated from their correlation coefficients. These are carried out on the log(odds ratio), and, since the standard errors of estimates vary between schools, are presented both in an unweighted form and a weighted form, the weighting in the latter case being by 1/sqrt(se) of the 1997 data.

Correlation	coefficient	s (unweigh	ted):	
	NES91	ESM92	ETH96	ETH97
NES91	1.0000	0317	.4572	.4026
ESM92	0317	1.0000	.2424	.4417
ETH96	.4572	.2424	1.0000	.4752
ETH97	.4026	.4417	.4752	1.0000
		/ . .		
Correlation	coefficient	ts (weighte	d by 1997	SE).
Correlation	coefficient NES91	ESM92	d by 1997 ETH96	SE). ETH97
Correlation NES91	coefficient NES91 1.0000	ESM92 ESM92 0944	d by 1997 ETH96 .3710	SE). ETH97 .3517
Correlation NES91 ESM92	coefficient NES91 1.0000 0944	ts (weighted ESM92 0944 1.0000	d by 1997 ETH96 .3710 .1713	SE). ETH97 .3517 .4008
Correlation NES91 ESM92 ETH96	coefficient NES91 1.0000 0944 .3710	ES (weighted ESM92 0944 1.0000 .1713	d by 1997 ETH96 .3710 .1713 1.0000	SE). ETH97 .3517 .4008 .4320
Correlation NES91 ESM92 ETH96 ETH97	coefficient NES91 1.0000 0944 .3710 .3517	ESM92 0944 1.0000 .1713 .4008	d by 1997 ETH96 .3710 .1713 1.0000 .4320	SE). ETH97 .3517 .4008 .4320 1.0000

Analysis will be restricted to the more appropriate weighted correlations. As noted before, the correlation between the 1991 (McManus) and 1992 (Esmail) cohorts is effectively zero, as was apparent from scrutiny of the estimates. The 1996 and 1997 estimates show a reasonable correlation^{*} of .4320, and the 1991 estimates correlate to a similar extent with the 1996 and 1997 estimates (.3710. and .3517). In contrast the Esmail estimates based on the 1992 data correlate only .1713 and .4320 with the 1996 and 1997 estimates. The discrepancy between the latter two values is itself mysterious and it is not clear which of the two is the better estimate.

The Esmail estimates overall correlate relatively poorly with the later data (at least for 1996), whereas the 1991 McManus estimates correlate nearly as much with the 1996 and 1997 estimates as the 1996 and 1997 estimates agree with each other. It is clear that the 1992 and 1991 estimates are inconsistent and hence must be doing something different; what is not clear, in part because of the discrepancy between the correlation of the 1992 data with 1996/7 data, is the extent to which the conclusions of Esmail¹⁹ are statistically reliable. Final judgement is perhaps best reserved until more robust estimates of between year correlations can be obtained from multilevel modelling.

Note: In 1991 and 1992 The Royal London and St. Bartholomew's Hospital Schools of Medicine were independent but in 1997/8 were merged as QMW. Likewise in 1991 and 1992 St. Thomas's and Guy's Hospital Medical Schools were independent, but merged in 1996/7 as UMDS. For the purposes of this appendix, 1996/7 names have been used, and odds ratios for 1991/2 calculated as the geometric mean of odds ratios of the constituent schools.

^{*} It should be noted that this method of calculating the correlations is far from optimal. Better would be to use multilevel modelling, which uses all the data in a more efficient manner. That however would have been too timeconsuming for the present study, but plans are in hand to carry it out in the future.

Appendix 4: List of computer readable files available from the author{tc "Appendix 4: List of computer readable files available from the author" \l 2}

The following files are available from the author at i.mcmanus@ucl.ac.uk or i.mcmanus@chime.ucl.ac.uk. They provide the statistical and computational underpinning of this report on these data.

- i. The main SPSS syntax file, CHMS9697.SPS for analysing the EXCEL work sheets and deriving all the basic variables used in the analysis, and for creating two SPSS system files, CAND9697.SAV and APPN9697.SAV. 31kB unzipped (9KB zipped).
- ii. APPN9697.SAV The main SPSS system file organised at the level of the *application*. Each record consists of one application by a candidate, with each candidate being allocated multiple records, one for each application. 20MB unzipped (2.3M zipped).
- iii. CAND9697.SAV The main SPSS system file organised at the level of the *candidate*. Each record consists of information relating to a single candidate, with some variables aggregated across that candidate's multiple applications (in particular OFFER, which indicates whether the candidate any offers from any of their applications). 3MB unzipped (416KB zipped).
- iv. REPORT.SPS An SPSS syntax file which can be used to run all the logistic regressions described in the present report. Code for running descriptive statistics has mostly been omitted since it is very straightforward and not usually ambiguous. 22KB unzipped (4K zipped).

Appendix 5: Mean A-level grade and UCAS A-level points.{tc "Appendix 5: Mean A-level grade and UCAS A-level points." \l 2}

UCAS conventionally presents its results in terms of A-level points, a score calculated on the basis of a grade A=10, B=8, C=6, D=4, E=2 and O/F=0, with AS levels scoring 5,4,3,2, and 1 respectively. For candidates who take more than 4 A- or AS-levels or who have taken resits, the grade is calculated on the basis of the best grades attained up to a maximum of three. The score therefore has a maximum of 30, and candidates who take 3 A-levels will have even valued scores. In addition the score is calculated including *all* A-levels, in particular including General Studies. The latter makes the score not particularly useful for present purposes. It also has the problem with a very highly qualified group of applicants such as those applying for medicine, many of whom have four or more A-levels, that there is a strong ceiling effect which makes it difficult to differentiate well qualified applicants. In previous studies we have found that it is better to calculate two separate scores, one the number of A-levels taken (excluding General Studies and AS-levels), and the other the mean grade attained in all subjects taken. In addition separate scores are calculated here for General Studies and AS-levels since they seem to behave differently in medical student selection.

The relationship between UCAS grade points, mean A-level grade and number of A-levels is shown in the figure below (lines represent Lowess regressions).

Figure:

NB This figure is in colour in the original — it will not reproduce well in photocopies.

Overall UCAS A-level points and mean A-level grade correlate .9498, indicating that for most purposes they behave in the same way, and therefore little in the analyses will be affected by substituting one for the other. However the figure does show that mean A-level grade gives more credit to the applicant who has gained AA on the basis of just two A-levels than does the UCAS system. That said, such candidates in general do *not* tend to get AA, whereas many more candidates with 3 or more A-levels do. Ultimately it makes little difference which method is used

— my own preference is to use a method which I have also used in the 1981, 1986 and 1991 cohorts, to provide some sort of comparability.

Appendix 6: List of non-Science subjects{tc "Appendix 6: List of non-Science subjects" \l 2} (Provided by UCAS).

Scienc	e subjects.				
The fo number	ollowing is a list of science su and points scores (e.g. Axn, Asz	ubjects xn, DAS	s exci Sxn)	luded in some of the calculations	for
			L40	Statistics 2	G4
A51	Anatomy Physiology And Health	В1	L41	Statistics 10	G4
N21	Nutrition Sc	R4			-
H51	Health	B9	т.42	Statistics 20	G4
B11	Biology	C1	T.43	Statistics 3	C4
	Nuffield Biology	C1	т Л Л	Statistics J	C1
D12	Human Biology	C1	C 2 1	Statistics -	C1
	Regist Dielems		321	Statistics Statistics Independent	G4
	Social Biology		522 001	Statistics Endorsement	G4 ar
BID DO1	Ruman/Social Biology			Computer Science	GD
BZI	Botany	C2	CZZ	Computer Studies	G5
BZZ	Project Botany	CZ	C23	Computer Science Endorsement	G5
ZII - 21	Zoology	C3	C24	Computing	G5
A31	Agricultural Science	D2	C25	Computer Awareness	G5
H41	Horticultural Science	D9	I21	Information Technology	G5
L51	Land-Based Occupations (Arig/E	D9	I22	Information Tech & Business	G5
C11	Chemistry	Fl	D11	Technical Drawing	Hl
C12	Nuffield Chemistry	F1	D12	Geometric/Mechanical Drawing	Н1
P11	Physics	F3	D13	Geometric/Engineering Drawing	Н1
P12	Nuffield Physics	F3	D14	Geometric/Building Drawing	Н1
P13	Physics And Mathematics	F3	D15	Technical/Engineering Drawing	Н1
P14	Physics and Chemistry	F3	D16	Engineering Drawing	Н1
P21	Physical Science	F3	E31	Engineering	Н1
P22	Nuffield Physical Science	F3	E32	Engineering Science	H1
G21	Geology	Fб	E33	Engineering Drawing And Design	Н1
S15	Marine Sci.	F7	E34	Elements Of Engineering Design	Н1
G14	Physical Geography	F8	E35	Engineering / Technology	Н1
E51	Environmental Science	F9	G42	Technical Graphics	Н1
E52	Environmental Studies	F9	G43	Applied Engineering Graphics	Н1
C61	Computations Endorsement	G1	в51	Building Construction	Н2
L31	Pure Mathematics 1	G1	M60	Motor Vehicle Maintenance	HЗ
L32	Pure Mathematics 2	G1	E41	Electronic Systems	Нб
L33	Pure Mathematics 3	G1	E42	Electronics Endorsement	нб
L34	Pure Mathematics 4	G1	E43	Electronics	нб
L35	Mechanics 1	G1	P41	Psychology	L7
L36	Mechanics 2	G1			
L37	Mechanics 3	G1	The	code for General studies is:	
L38	Mechanics 4	G1			
M11	Mathematics	G1	G51	General Studies	V9
M12	Mei Mathematics	G1			
M13	Smp Mathematics	G1			
M21	Pure Mathematics	G1			
M22	Pure & Applied Mathematics	G1			
M23	Pure Matha & Statistica	G1			
M24	Pure Maths With Computations	G1			
M25	Mei Dure Mathematics	G1			
M26	Dure Mathe With Mechanice	C1			
M27	Further Dure Mathe & Mechanice	G1			
M31	Additional Mathematics	G1			
M32	Smp Additional Mathematics	G1			
M33	Applied Mathematics	G1			
M34	Mei Applied Mathematics	G1			
M32	Further Mathematica	C1			
M36	Smp Further Mathematics	G1			
M37	Mei Further Mathematics	G1			
/		~ -			

M38

M39

M41 M42

M43

M44

M45

M46 M47

M65

M66

N11

N31

N32

L39

Applied Maths. & Statistics

Maths. (Mechanics With Stats)

Nuffield Further Mathematics

Mathematics (Statistics)

Maths With Applications

Mathematics (i)

Mathematics (ii)

Mathematics (v)

Mechanics

Navigation

Statistics 1

Mathematics (iii) Mathematics (iv)

Applied Mechanics

Nuffield Mathematics

G1

G4

Appendix 7: Comparison of proportions of ethnic minorities in Census data, UCAS applicants, and medical school applicants. *{tc "Appendix 7: Comparison of proportions of ethnic minorities in Census data, UCAS applicants, and medical school applicants."* *l 2}*

Comparison of proportions of ethnic groups in population (calculated from 1991 census for group then aged 10-14⁴⁴), UCAS home applicants and home entrants (1996+1997), applicants to medical school (1996+1997) and applicants receiving one or more offers.

	Population	UCAS	overall	Medicin	e only
	(10-14,				
Percentages	1991)	Applicants	Entrants	%Applicants	%Offers
White	91.32	84.98	86.07	64.86	74.03
Bangladeshi	0.70	0.66	0.61	1.87	1.24
Chinese	0.35	0.92	0.96	2.14	1.81
Indian	2.37	4.10	4.08	11.96	10.46
Pakistani	1.92	2.46	2.24	6.76	3.99
Other Asian	0.42	1.23	1.16	5.31	4.19
All Asian	5.75	9.38	9.05	28.03	21.69
Black African	0.46	2.07	1.69	2.85	1.24
Black Caribbean	0.91	1.31	1.10	0.49	0.25
Black Other	0.66	0.59	0.50	0.45	0.24
All Black	2.03	3.97	3.30	3.79	1.72
Other	0.90	1.54	1.58	3.31	2.55
N	3311711	763212	571607	18943	11162

Note: Census data provides no information on the proportions of individuals not answering the ethnic question. For UCAS data overall about 6.5% of applicants do not describe their ethnic origin, and for medical applicants about 3.2% of applicants do not describe their ethnic origin. These 'Not known' individuals are omitted from the above table so that all percentages sum to 100%, and comparison between the data sets is facilitated.

Appendix 8: Classification of medical schools as 'local'{tc "Appendix 8: Classification of medical schools as 'local'" $\label{eq:local}$

The definition used for the present analyses of a 'local' applicant to each medical school. It is accepted that to some extent these definitions are arbitrary, and further exploration of this questions is desirable, ideally using post-code information.

	A: North	B: Yorkshire/Humberside	C:North West	D: East Midlands	E: West Midlands	F: East Anglia	G: Greater London	H: South East	I: South West	J: Wales	K: Northern Ireland	L: Scotland
A20: Aberdeen												/
B32: Birmingham			/	/	/							
B78: Bristol					/				/	/		
C05: Cambridge						/	/	/				
C40: CXWMS							/	/				
D65: Dundee												/
E56: Edinburgh	/											/
G28: Glasgow			/									/
I50: Imperial							/	/				
K72: King's College							/	/				
L23: Leeds		/	/									
L34: Leicester		/		/	/							
L41: Liverpool		/	/		/							
M20: Manchester		/	/		/							
N21: Newcastle	/	/	/									
N84: Nottingham		/	/	/	/							
O33: Oxford							/	/	/			
Q50: QMW							/	/				
Q75: Queen's, Belfast											/	
R60: Royal Free HMS							/	/				
S18: Sheffield		/	/	/	/							
S27: Southampton							/	/	/			
S36: St. Andrews												/
S49: St. George's							/	/				
U60: UMDS							/	/				
U80: UCL							/	/				
W10: Wales									/	/		

Mean (or percent) of applicants at each medical school.

	Number of	Mean A-	Number	% Non-	0/_	%General	General	٨٩-	Ann'n	%	%	% < 5	% Six	%
	applicants	level	of A-	science	70 Resits	Studies	Studies	AG-	date	Previous	Insurn'ce	med'ne	med'ne	Gap
	1996+1997	grade	levels	A-levels	TCSII3	taken	Grade	101013	uaic	app'n	choice	app'ns	app'ns	year
A20: Aberdeen	1959	7.95	3.14	6	5	7	3.84	0.17	2.53	8	42	24	6	5
B32: Birmingham	3780	8.29	3.17	21	4	35	3.87	0.23	1.93	6	26	6	6	6
B78: Bristol	3817	8.46	3.23	27	4	27	3.91	0.25	1.94	6	23	9	6	7
C05: Cambridge	1927	9.26	3.47	18	2	29	4.03	0.31	1.52	4	21	6	3	8
C40: CXWMS	4413	7.52	3.17	20	24	18	3.76	0.19	2.12	24	21	7	6	4
D65: Dundee	2437	7.86	3.14	11	7	11	3.81	0.17	2.49	10	39	24	7	4
E56: Edinburgh	3816	8.54	3.25	17	3	23	3.94	0.23	2.16	4	33	13	6	5
G28: Glasgow	2072	8.07	3.16	9	4	10	3.85	0.18	2.48	6	43	20	6	5
150: Imperial	4110	7.79	3.18	20	10	17	3.83	0.22	2.06	11	26	7	5	6
K72: King's College	3947	7.71	3.16	21	6	17	3.82	0.2	2.18	8	26	10	7	5
L23: Leeds	4969	8.17	3.18	20	11	39	3.84	0.21	2	11	26	7	7	5
L34: Leicester	3582	7.87	3.14	20	11	33	3.77	0.2	2.03	13	25	8	8	6
L41: Liverpool	3256	8.06	3.17	21	16	39	3.81	0.2	2.11	15	29	8	8	5
M20: Manchester	4684	8.11	3.16	23	6	34	3.83	0.21	2.1	7	29	10	7	6
N21: Newcastle	3814	8.29	3.19	24	12	39	3.89	0.22	2.05	14	29	8	7	6
N84: Nottingham	5148	8.58	3.24	22	6	34	3.94	0.25	1.9	7	25	7	6	6
O33: Oxford	1049	8.95	3.38	23	3	30	4.01	0.31	1.56	4	23	6	6	4
Q50: QMW	3782	7.48	3.11	21	10	20	3.78	0.18	2.11	13	26	9	6	6
Q75: Queen's, Belfast	906	8.53	3.2	19	10	2	3.84	0.09	2.41	11	47	27	5	4
R60: Royal Free HMS	2950	7.66	3.2	20	30	16	3.78	0.2	2.17	28	20	6	7	5
S18: Sheffield	5367	8.1	3.19	23	18	37	3.82	0.21	2.08	17	25	9	7	5
S27: Southampton	3488	7.97	3.18	23	7	20	3.84	0.23	2.01	11	23	7	7	6
S36: St. Andrews	1364	8.06	3.17	7	17	19	3.84	0.22	2.37	20	36	20	5	3
S49: St. George's	2854	7.45	3.17	20	19	16	3.8	0.2	2.19	18	20	8	8	6
U60: UMDS	4540	7.74	3.15	20	8	18	3.8	0.21	2.05	11	23	7	5	5
U80: UCL	6002	7.87	3.19	20	18	19	3.81	0.22	2.07	17	21	7	5	5
W10: Wales	2643	8.03	3.17	25	10	25	3.84	0.2	2.06	11	24	11	7	6

	Number of applicants 1996+1997	% Female	% Mature	Social class	% Ethnic minority	% Indep't school	% FE/HE	% Grammar schoo	% Sixth Form Coll/ Other	%Local	Mean number of Scottish Highers	Mean grade at Scottish Highers	Per cent missing values
A20: Aberdeen	1959	53	13	1.92	16	24	5	14	19	62	5.93	5.29	17.3
B32: Birmingham	3780	55	9	1.93	31	31	9	12	25	38	na	na	12.2
B78: Bristol	3817	55	13	1.84	22	36	9	12	23	30	na	na	12.9
C05: Cambridge	1927	46	2	1.77	37	46	4	15	12	48	na	na	11.7
C40: CXWMS	4413	48	16	1.95	55	35	14	8	28	65	na	na	13.4
D65: Dundee	2437	52	15	1.97	19	19	7	17	23	48	5.91	5.16	16.6
E56: Edinburgh	3816	51	11	1.86	19	33	6	13	19	35	5.88	5.39	14.6
G28: Glasgow	2072	54	14	1.91	14	22	5	16	21	61	5.89	5.34	16.8
I50: Imperial	4110	47	14	1.97	48	33	12	10	25	62	na	na	13.5
K72: King's College	3947	47	17	2.01	55	28	13	11	29	65	na	na	14.4
L23: Leeds	4969	51	10	1.94	30	30	9	10	26	32	na	na	12
L34: Leicester	3582	51	16	2	36	23	11	10	32	36	na	na	12.8
L41: Liverpool	3256	52	12	1.99	27	24	11	11	31	46	na	na	12.2
M20: Manchester	4684	51	12	1.98	33	27	10	12	27	41	na	na	12.7
N21: Newcastle	3814	58	11	1.89	20	32	10	9	24	41	na	na	12.6
N84: Nottingham	5148	52	8	1.89	25	33	7	12	22	38	na	na	12.1
O33: Oxford	1049	45	4	1.86	33	43	6	12	16	53	na	na	12.3
Q50: QMW	3782	50	14	2.01	50	27	14	13	27	61	na	na	13.5
Q75: Queen's, Belfast	906	54	10	2.09	7	2	5	66	21	86	na	na	13.8
R60: Royal Free HMS	2950	51	20	1.89	50	35	12	7	32	68	na	na	13.7
S18: Sheffield	5367	54	14	1.98	30	29	12	8	29	49	na	na	12.7
S27: Southampton	3488	51	20	1.91	27	28	11	10	29	66	na	na	13.5
S36: St. Andrews	1364	51	6	1.89	25	41	6	7	14	51	5.91	5.15	15.3
S49: St. George's	2854	48	23	1.94	50	30	15	8	32	67	na	na	14.3
U60: UMDS	4540	50	14	1.95	52	34	12	11	26	66	na	na	13.5
U80: UCL	6002	50	13	1.92	52	37	12	10	25	64	na	na	13.4
W10: Wales	2643	56	16	1.95	26	23	14	9	26	40	na	na	13.4

Descriptive statistics (continued): Demographic variables.

Appendix 10: Summary of selection at individual medical schools{tc "Appendix 10: Summary of selection at individual medical schools" \l 2}

Logistic regression of likelihood of receiving an offer at each individual medical school in 1996 and 1997. Readers are directed to the section on statistical significance for the need for applying different criteria for studying only a *single* institution, as opposed to looking at *all* institutions simultaneously. Significance levels in the column marked 'Sig' are *nominal* significance levels.

A20: The University of Aberdeen{tc "A20: The University of Aberdeen" \1 3}

MEDCOIL .	x 2 0 XEX		06 00				
MEDSCHL:	AZU YEA	RAPP: Variable	96.00	Faustion			
Variable	 D	- variabie	wald	Equation Af	cia		
Variable	D	5.6.	Walu	ur	SIG	K	пхр(р)
AC	3386	0704	23 1610	1	0000	1219	1 4030
AN	- 2034	2375	7333	1	3918	0000	8159
NONCOTA	.2034	.2575	./555	1	9169	.0000	1 0970
NUNSCIA	.0035	.3002	2 0667	1	.0100	.0000	10070
RESTIS	7155	.4000	3.0007	1	.0799	0274	.4009
GSIAKEN	1.1102	.3017	9.5500	1	.0020	.0729	3.0594
GSGRADEI	.5892	.3086	3.045/	1	.0562	.0340	1.8020
ASN	.1263	.3356	.141/	1	./066	.0000	1.134/
APPDATEL	5520	.1590	12.0538	1	.0005	0840	.5/58
PREVAPP	3194	.3357	.9050	1	.3415	.0000	.7266
INSURNCE	.1092	.2283	.2288	1	.6324	.0000	1.1154
LE4MED	-1.1572	.2504	21.3485	1	.0000	1166	.3144
MEDAPP6	.2269	.4022	.3184	1	.5726	.0000	1.2548
SEX1	.3520	.1652	4.5415	1	.0331	.0423	1.4220
MATURE	3964	.3424	1.3400	1	.2470	.0000	.6728
SOCIAL2	.0445	.0975	.2089	1	.6476	.0000	1.0456
ETHNIC3	5493	.2455	5.0079	1	.0252	0460	.5774
INDEPEND	1551	.2383	.4237	1	.5151	.0000	.8563
FEHE	.2091	.4237	.2435	1	.6217	.0000	1.2326
GRAMMAR	.8927	.3449	6.7009	1	.0096	.0575	2.4418
OTHSCHL	3213	.3031	1.1236	1	.2891	.0000	.7252
LOCAL	1.6704	.2851	34.3323	1	.0000	.1507	5.3141
SHN	.3712	.1477	6.3163	1	.0120	.0551	1.4495
SHG	1.8914	1972	91,9527	1	.0000	2514	6.6285
Constant	14 2560	2 1000	40 0045	1	0000		010200
CONSLANC	-14.3300	2.1090	44.9845	1	.0000		
CONSTANT	-14.3500	2.1898	42.9845	T	.0000		
MEDSCHL:	-14.3588 A20 YEA	Z.1898 RAPP:	42.9845 97.00	Ţ	.0000		
MEDSCHL:	-14.3568 A20 YEA	Z.1898 RAPP:	42.9845 97.00		.0000		
MEDSCHL:	A20 YEA	2.1898 RAPP: - Variable	42.9845 97.00 es in the	Equation			
MEDSCHL: Variable	A20 YEA	2.1898 RAPP: - Variable S.E.	42.9845 97.00 es in the Wald	I Equation df	.0000	 R	 Exp(B)
MEDSCHL: Variable	-14.3508 A20 YEA B 2022	Z.1898 RAPP: - Variable S.E.	42.9845 97.00 es in the Wald	I Equation df	.0000	 R	Exp(B)
MEDSCHL: Variable	-14.3568 A20 YEA B .3932 2011	2.1898 RAPP: - Variable S.E. .0853	42.9845 97.00 es in the Wald 21.2314	I Equation df 1	.0000	R .1279	Exp(B) 1.4817
MEDSCHL: Variable AG AN	-14.3508 A20 YEA B .3932 3011	2.1898 RAPP: - Variable S.E. .0853 .2756	42.9845 97.00 es in the Wald 21.2314 1.1940	I Equation df 1 1	.0000 .0000 .2745	R .1279 .0000	Exp(B) 1.4817 .7400
MEDSCHL: Variable AG AN NONSCIA	A20 YEA B .3932 3011 1519	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523	Equation df 1 1 1	.0000 .0000 .2745 .6963	R .1279 .0000 .0000	Exp(B) 1.4817 .7400 .8591
MEDSCHL: Variable AG AN NONSCIA RESITS	A20 YEA 	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869	Equation df 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587	R .1279 .0000 .0000 .0000	Exp(B) 1.4817 .7400 .8591 .5013
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN	A20 YEA B .3932 3011 1519 6906 .9435	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456	Equation df 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165	R .1279 .0000 .0000 .0000 .0565	Exp(B) 1.4817 .7400 .8591 .5013 2.5689
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110	Equation df 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215	R .1279 .0000 .0000 .0000 .0565 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171	Equation df 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412	R .1279 .0000 .0000 .0000 .0565 .0000 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491	Equation df 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284	1 Equation df 1 1 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933	1 Equation df 1 1 1 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217	R .1279 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166	R .1279 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 .0000 0564	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819 .4124	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819 .4124 .1904	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430 7583	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819 .4124 .1904 .3904	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286 3.7720	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019 .0521	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000 .0000 0388	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750 .4685
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430 7583 .0187	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819 .4124 .1904 .3904 .1147	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286 3.7720 .0267	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019 .0521 .8702	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000 .0000 0388 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750 .4685 1.0189
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430 7583 .0187 6695	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819 .4124 .1904 .3904 .1147 .2720	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286 3.7720 .0267 6.0567	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0000 Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019 .0521 .8702 .0139	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000 .0000 0388 .0000 0588	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750 .4685 1.0189 .5120
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430 7583 .0187 6695 1406	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819 .4124 .1904 .3904 .1147 .2720 .2647	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286 3.7720 .0267 6.0567 .2821	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019 .0521 .8702 .0139 .5953	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000 .0000 0388 .0000 0588 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750 .4685 1.0189 .5120 .8688
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430 7583 .0187 6695 1406 2110	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819 .4124 .1904 .3904 .1147 .2720 .2647 .4609	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286 3.7720 .0267 6.0567 .2821 .2096	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019 .0521 .8702 .0139 .5953 .6471	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000 .0000 0388 .0000 0588 .0000 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750 .4685 1.0189 .5120 .8688 .8097
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE GRAMMAR	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430 7583 .0187 6695 1406 2110 .7811	2.1898 RAPP: - Variable S.E. .0853 .2756 .3892 .4900 .3936 .2822 .4090 .1599 .3811 .2474 .2819 .4124 .1904 .3904 .1147 .2720 .2647 .4609 .3639	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286 3.7720 .0267 6.0567 .2821 .2096 4.6063	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019 .0521 .8702 .0139 .5953 .6471 .0319	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 -0326 .0000 .0000 -0564 .0000 .0000 -0388 .0000 -0588 .0000 .0000 .0000 .0000 .0000 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750 .4685 1.0189 .5120 .8688 .8097 2.1839
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE GRAMMAR OTHSCHL	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430 7583 .0187 6695 1406 2110 .7811 -1.1213	<pre>Z.1898 RAPP: Variable S.E. 0853 2756 3892 4900 3936 2822 4090 1599 3811 2474 2819 4124 1904 3904 1147 2720 2647 4609 3639 3416</pre>	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286 3.7720 .0267 6.0567 .2821 .2096 4.6063 10.7776	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019 .0521 .8702 .0139 .5953 .6471 .0319 .0010	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000 .0000 0388 .0000 0588 .0000 .0000 .0000 .0000 .0000 .0000	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750 .4685 1.0189 .5120 .8688 .8097 2.1839 .3259
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE GRAMMAR OTHSCHL LOCAL	A20 YEA A20 YEA B .3932 3011 1519 6906 .9435 .1809 .1906 2882 0642 .3023 6751 .5649 .2430 7583 .0187 6695 1406 2110 .7811 -1.1213 .8134	<pre>Z.1898 RAPP: Variable S.E. 0853 2756 3892 4900 3936 2822 4090 1599 3811 2474 2819 4124 1904 3904 1147 2720 2647 4609 3639 3416 2749</pre>	42.9845 97.00 es in the Wald 21.2314 1.1940 .1523 1.9869 5.7456 .4110 .2171 3.2491 .0284 1.4933 5.7340 1.8759 1.6286 3.7720 .0267 6.0567 .2821 .2096 4.6063 10.7776 8.7584	1 Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0000 .2745 .6963 .1587 .0165 .5215 .6412 .0715 .8663 .2217 .0166 .1708 .2019 .0521 .8702 .0139 .5953 .6471 .0319 .0010 .0031	R .1279 .0000 .0000 .0000 .0565 .0000 .0000 0326 .0000 .0000 0564 .0000 .0000 0388 .0000 0588 .0000 .0000 .0588 .0000 .0000 .0471 0864 .0758	Exp(B) 1.4817 .7400 .8591 .5013 2.5689 1.1983 1.2099 .7496 .9378 1.3529 .5091 1.7592 1.2750 .4685 1.0189 .5120 .8688 .8097 2.1839 .3259 2.2556
SHG	1.9531	.2491	61.4731	1	.0000	.2250	7.0504
----------	----------	--------	---------	---	-------	-------	--------
Constant	-13.8445	2.6070	28.2005	1	.0000		

B32: The University of Birmingham{tc "B32: The University of Birmingham" $\1 3$ }

MEDSCHL: B32 YEARAPP: 96.00

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Siq	R	Exp(B)
					5		1 . /
AG	.3775	.0499	57.2602	1	.0000	.1620	1.4586
AN	.1307	.1245	1.1016	1	.2939	.0000	1.1396
NONSCIA	.1450	.1487	.9508	1	.3295	.0000	1.1560
RESITS	5550	.4098	1.8337	1	.1757	.0000	.5741
GSTAKEN	0036	.1369	.0007	1	.9792	.0000	.9964
GSGRADE1	.1069	.0960	1.2402	1	.2654	.0000	1.1128
ASN	.0208	.1129	.0339	1	.8540	.0000	1.0210
APPDATE1	7670	.1014	57.2486	1	.0000	1620	.4644
PREVAPP	.1351	.2720	.2466	1	.6195	.0000	1.1446
INSURNCE	4174	.1478	7.9701	1	.0048	0533	.6588
LE4MED	3638	.2894	1.5801	1	.2087	.0000	.6950
MEDAPP6	5534	.2838	3.8030	1	.0512	0293	.5750
SEX1	3217	.1221	6.9413	1	.0084	0484	.7250
MATURE	5511	.3405	2.6195	1	.1056	0172	.5763
SOCIAL2	0449	.0686	.4283	1	.5128	.0000	.9561
ETHNIC3	6409	.1468	19.0514	1	.0000	0900	.5268
INDEPEND	0538	.1600	.1132	1	.7365	.0000	.9476
FEHE	.1606	.2644	.3686	1	.5437	.0000	1.1742
GRAMMAR	.1074	.2038	.2777	1	.5982	.0000	1.1134
OTHSCHL	2039	.1880	1.1767	1	.2780	.0000	.8155
LOCAL	.3361	.1329	6.3932	1	.0115	.0457	1.3995
Constant	-1.1155	.9063	1.5150	1	.2184		

MEDSCHL: B32 YEARAPP: 97.00

		Variables	in the	Equation			
				-			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.6851	.0805	72.5033	1	.0000	.1947	1.9839
AN	.2158	.1267	2.9013	1	.0885	.0220	1.2409
NONSCIA	.2888	.1470	3.8581	1	.0495	.0316	1.3348
RESITS	.2096	.3792	.3054	1	.5805	.0000	1.2332
GSTAKEN	1677	.1742	.9266	1	.3357	.0000	.8456
GSGRADE1	.3642	.1541	5.5836	1	.0181	.0439	1.4394
ASN	.0041	.1294	.0010	1	.9750	.0000	1.0041
APPDATE1	6795	.1121	36.7644	1	.0000	1367	.5069
PREVAPP	0486	.3120	.0243	1	.8761	.0000	.9525
INSURNCE	2729	.1738	2.4644	1	.1165	0158	.7612
LE4MED	0116	.3005	.0015	1	.9693	.0000	.9885
MEDAPP6	-1.0087	.4557	4.9002	1	.0269	0395	.3647
SEX1	.0122	.1337	.0083	1	.9274	.0000	1.0123
MATURE	.9920	.3224	9.4692	1	.0021	.0634	2.6967
SOCIAL2	1917	.0862	4.9406	1	.0262	0398	.8256
ETHNIC3	2066	.1744	1.4021	1	.2364	.0000	.8134
INDEPEND	.0316	.1796	.0310	1	.8602	.0000	1.0321
FEHE	0555	.3188	.0303	1	.8618	.0000	.9460
GRAMMAR	1753	.2285	.5884	1	.4431	.0000	.8392
OTHSCHL	5887	.2528	5.4234	1	.0199	0429	.5551
LOCAL	.3564	.1398	6.4989	1	.0108	.0492	1.4282
Constant	-9.4136	1.2110	60.4273	1	.0000		

B78: University of Bristol{tc "B78: University of Bristol" \1 3}

MEDSCHL: B78 YEARAPP:	96.00
-----------------------	-------

		Variables	in the	Equation			
				1			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.5382	.0687	61.4623	1	.0000	.1818	1.7130
AN	.6817	.1255	29.4826	1	.0000	.1236	1.9772
NONSCIA	.2263	.1513	2.2384	1	.1346	.0115	1.2540
RESITS	0364	.4278	.0072	1	.9322	.0000	.9643
GSTAKEN	.1054	.1589	.4400	1	.5071	.0000	1.1112
GSGRADE1	.2115	.1317	2.5766	1	.1085	.0179	1.2355
ASN	.1095	.1190	.8467	1	.3575	.0000	1.1157
APPDATE1	2841	.1091	6.7748	1	.0092	0515	.7527
PREVAPP	7419	.3741	3.9335	1	.0473	0328	.4762
INSURNCE	5764	.1815	10.0816	1	.0015	0670	.5619
LE4MED	8877	.2998	8.7656	1	.0031	0613	.4116
MEDAPP6	3774	.3124	1.4590	1	.2271	.0000	.6857
SEX1	.5317	.1386	14.7177	1	.0001	.0841	1.7018
MATURE	8657	.3699	5.4774	1	.0193	0440	.4208
SOCIAL2	.0103	.0832	.0154	1	.9012	.0000	1.0104
ETHNIC3	1430	.1713	.6976	1	.4036	.0000	.8667
INDEPEND	0937	.1871	.2505	1	.6167	.0000	.9106
FEHE	3038	.3339	.8280	1	.3628	.0000	.7380
GRAMMAR	0792	.2254	.1233	1	.7254	.0000	.9239
OTHSCHL	4705	.2363	3.9630	1	.0465	0330	.6247
LOCAL	.4384	.1441	9.2514	1	.0024	.0635	1.5503
Constant	-8.2966	1.1631	50.8836	1	.0000		

MEDSCHL: B78 YEARAPP: 97.00

------ Variables in the Equation ------Variable B S.E. Wald df Sig R Exp(B)

 Variable
 B
 S.E.
 Wald
 df
 Sig
 R
 Exp(B)

 AG
 .6851
 .0805
 72.5033
 1
 .0000
 .1947
 1.9839

 AN
 .2158
 .1267
 2.9013
 1
 .0885
 .0220
 1.2409

 NONSCIA
 .2888
 .1470
 3.8581
 1
 .0495
 .0316
 1.3348

 RESITS
 .2096
 .3792
 .3054
 1
 .5805
 .0000
 1.2332

 GSTAKEN
 -.1677
 .1742
 .9266
 1
 .3357
 .0000
 .8456

 GSGRADE1
 .3642
 .1541
 5.5836
 1
 .0181
 .0439
 1.4394

 ASN
 .0041
 .1294
 .0010
 1
 .9750
 .0000
 .00141

 APPDATE1
 -.6795
 .1121
 36.7644
 1
 .0000
 ..1667
 .5069

 PREVAPP
 .0486
 .3120
 .0243
 1
 .8761
 .0000
 .9525

 INSURNCE
 -.2729
 .1738
 2.4644
 1
 .1655
 .3647

 SEX1 C05: Cambridge University{tc "C05: Cambridge University" \1 3}

MEDSCHL:	C05	YEARAPP:	96.00
----------	-----	----------	-------

		Variables	in the	Equation			
				-			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.8197	.1247	43.1725	1	.0000	.1932	2.2697
AN	.2992	.1356	4.8721	1	.0273	.0510	1.3488
NONSCIA	2138	.2207	.9385	1	.3327	.0000	.8075
RESITS	1.4167	.6555	4.6707	1	.0307	.0492	4.1236
GSTAKEN	5909	.3187	3.4370	1	.0638	0361	.5538
GSGRADE1	.4820	.2870	2.8217	1	.0930	.0273	1.6194
ASN	1008	.1429	.4975	1	.4806	.0000	.9041
APPDATE1	3689	.1603	5.2953	1	.0214	0547	.6915
PREVAPP	0220	.3817	.0033	1	.9540	.0000	.9782
INSURNCE	.0248	.2215	.0125	1	.9110	.0000	1.0251
LE4MED	.5267	.3200	2.7091	1	.0998	.0254	1.6933
MEDAPP6	7117	.5511	1.6682	1	.1965	.0000	.4908
SEX1	.5546	.1640	11.4371	1	.0007	.0925	1.7412
MATURE	-4.8151	6.8618	.4924	1	.4829	.0000	.0081
SOCIAL2	0936	.1071	.7641	1	.3821	.0000	.9106
ETHNIC3	3454	.1752	3.8861	1	.0487	0414	.7080
INDEPEND	.3887	.2239	3.0131	1	.0826	.0303	1.4750
FEHE	6547	.6751	.9405	1	.3322	.0000	.5196
GRAMMAR	0728	.2723	.0715	1	.7892	.0000	.9298
OTHSCHL	3546	.3169	1.2520	1	.2632	.0000	.7014
LOCAL	0084	.1800	.0022	1	.9630	.0000	.9917
Constant	-7.7486	7.1230	1.1834	1	.2767		

MEDSCHL: C05 YEARAPP: 97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.8498	.1345	39.9291	1	.0000	.1795	2.3393
AN	.5980	.1462	16.7404	1	.0000	.1119	1.8186
NONSCIA	2722	.2118	1.6522	1	.1987	.0000	.7617
RESITS	3009	.5205	.3343	1	.5631	.0000	.7401
GSTAKEN	4680	.2779	2.8362	1	.0922	0267	.6263
GSGRADE1	.5153	.2384	4.6719	1	.0307	.0476	1.6742
ASN	.1250	.1494	.7000	1	.4028	.0000	1.1332
APPDATE1	3700	.1632	5.1403	1	.0234	0517	.6908
PREVAPP	.1492	.4794	.0969	1	.7556	.0000	1.1609
INSURNCE	3200	.2203	2.1096	1	.1464	0096	.7262
LE4MED	.4498	.3350	1.8023	1	.1794	.0000	1.5680
MEDAPP6	.0268	.5057	.0028	1	.9577	.0000	1.0272
SEX1	.3101	.1584	3.8318	1	.0503	.0395	1.3635
MATURE	.2108	.8601	.0601	1	.8064	.0000	1.2347
SOCIAL2	.0557	.0936	.3533	1	.5522	.0000	1.0572
ETHNIC3	6222	.1750	12.6459	1	.0004	0951	.5368
INDEPEND	.0878	.2116	.1723	1	.6781	.0000	1.0918
FEHE	.2194	.4480	.2398	1	.6243	.0000	1.2453
GRAMMAR	.0061	.2665	.0005	1	.9818	.0000	1.0061
OTHSCHL	5824	.3189	3.3364	1	.0678	0337	.5585
LOCAL	.1600	.1762	.8246	1	.3638	.0000	1.1735
Constant	-12.3140	2.0206	37.1395	1	.0000		

C40: Charing Cross and Westminster Medical School (University of London){tc "C40: Charing Cross and Westminster Medical School (University of London)" \1 3}

MEDSCHL:	C40 YEAF	RAPP:	96.00				
		- Variable	es in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.5647	.0544	107.6760	1	.0000	.2240	1.7588
AN	.0890	.1257	.5010	1	.4791	.0000	1.0931
NONSCIA	0731	.1744	.1757	1	.6751	.0000	.9295
RESITS	-1.6431	.2235	54.0251	1	.0000	1572	.1934
GSTAKEN	2535	.1819	1.9422	1	.1634	.0000	.7761
GSGRADE1	.1756	.1263	1.9332	1	.1644	.0000	1.1920
ASN	.0854	.1416	.3637	1	.5465	.0000	1.0892
APPDATE1	9549	.1073	79.2503	1	.0000	1915	.3848
PREVAPP	.1246	.1911	.4249	1	.5145	.0000	1.1327
INSURNCE	-1.1176	.2042	29.9467	1	.0000	1152	.3271
LE4MED	8314	.3519	5.5822	1	.0181	0412	.4354
MEDAPP6	-2.0929	.6100	11.7704	1	.0006	0681	.1233
SEX1	.3934	.1348	8.5215	1	.0035	.0556	1.4820
MATURE	4988	.2808	3.1556	1	.0757	0234	.6073
SOCIAL2	2825	.0820	11.8691	1	.0006	0685	.7539
ETHNIC3	8367	.1423	34.5775	1	.0000	1244	.4331
INDEPEND	0832	.2144	.1506	1	.6980	.0000	.9202
FEHE	3181	.3039	1.0961	1	.2951	.0000	.7275
GRAMMAR	.5795	.2657	4.7580	1	.0292	.0362	1.7852
OTHSCHL	3538	.2483	2.0302	1	.1542	0038	.7020
LOCAL	0756	.1518	.2480	1	.6185	.0000	.9272
Constant	-1.1510	.9339	1.5191	1	.2178		

MEDSCHL: C40 YEARAPP: 97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.5239	.0563	86.5592	1	.0000	.2061	1.6886
AN	.3383	.1486	5.1812	1	.0228	.0400	1.4026
NONSCIA	.1602	.1779	.8112	1	.3678	.0000	1.1737
RESITS	-1.4233	.2285	38.8010	1	.0000	1360	.2409
GSTAKEN	.2662	.1903	1.9565	1	.1619	.0000	1.3050
GSGRADE1	.6721	.1550	18.8059	1	.0000	.0919	1.9584
ASN	0101	.1482	.0047	1	.9456	.0000	.9899
APPDATE1	9863	.1100	80.3349	1	.0000	1984	.3730
PREVAPP	4431	.2001	4.9035	1	.0268	0382	.6421
INSURNCE	5500	.1913	8.2699	1	.0040	0561	.5769
LE4MED	-1.0444	.4167	6.2834	1	.0122	0464	.3519
MEDAPP6	8881	.4574	3.7691	1	.0522	0298	.4114
SEX1	.2777	.1392	3.9776	1	.0461	.0315	1.3201
MATURE	7045	.2755	6.5390	1	.0106	0478	.4943
SOCIAL2	2694	.0833	10.4650	1	.0012	0652	.7638
ETHNIC3	7691	.1487	26.7501	1	.0000	1115	.4634
INDEPEND	2330	.2097	1.2338	1	.2667	.0000	.7922
FEHE	8491	.3482	5.9473	1	.0147	0445	.4278
GRAMMAR	2873	.2671	1.1570	1	.2821	.0000	.7503
OTHSCHL	2045	.2436	.7050	1	.4011	.0000	.8151
LOCAL	.1668	.1601	1.0848	1	.2976	.0000	1.1815
Constant	-3.4755	1.0007	12.0631	1	.0005		

MEDSCHL:	D65	YEARAPP:	96.00
----------	-----	----------	-------

		Variable	s in the	Equation			
				-			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.0401	.0630	.4038	1	.5251	.0000	1.0409
AN	.6224	.1813	11.7810	1	.0006	.0766	1.8633
NONSCIA	.4241	.2712	2.4453	1	.1179	.0163	1.5282
RESITS	4190	.3662	1.3089	1	.2526	.0000	.6577
GSTAKEN	6886	.3056	5.0781	1	.0242	0430	.5023
GSGRADE1	1362	.2270	.3601	1	.5484	.0000	.8727
ASN	.3956	.2814	1.9767	1	.1597	.0000	1.4853
APPDATE1	0822	.1521	.2920	1	.5889	.0000	.9211
PREVAPP	.8982	.2919	9.4693	1	.0021	.0670	2.4552
INSURNCE	.1479	.2168	.4655	1	.4950	.0000	1.1594
LE4MED	-1.1405	.2609	19.1097	1	.0000	1013	.3197
MEDAPP6	.3860	.3631	1.1305	1	.2877	.0000	1.4711
SEX1	.0670	.1637	.1678	1	.6821	.0000	1.0693
MATURE	-1.4089	.3475	16.4331	1	.0001	0931	.2444
SOCIAL2	1650	.0933	3.1300	1	.0769	0260	.8479
ETHNIC3	6621	.2322	8.1326	1	.0043	0607	.5158
INDEPEND	4665	.2401	3.7766	1	.0520	0327	.6272
FEHE	6758	.4010	2.8394	1	.0920	0224	.5088
GRAMMAR	8248	.3135	6.9208	1	.0085	0543	.4383
OTHSCHL	- 7854	2635	8 8877	1	0029	- 0643	4559
	2 2504	2526	79 3829	1	0000	2155	9 4914
SHN	3841	1573	5 9647	1	0146	0488	1 4683
SHC	1 7521	1947	81 0126	1	0000	2178	5 7669
Constant	-10 9287	1 9882	30 2158	1	0000	.21/0	5.7005
combeane	10.9207	1.9002	50.2150	-	.0000		
MEDOAUT .							
MEDSCHL.	D65 YEAR	APP:	97.00				
MEDSCHL.	D65 YEAR.	APP:	97.00				
MEDSCHL.	D65 YEAR.	APP: Variable	97.00 s in the	Equation			
MEDSCHL:	D65 YEAR.	APP: Variable	97.00 s in the	Equation			(P)
Variable	D65 YEAR. B	APP: Variable S.E.	97.00 s in the Wald	Equation df	Sig	R	Exp(B)
Variable	D65 YEAR. B 1400	APP: Variable S.E. 0662	97.00 s in the Wald 4 4662	Equation df	 Sig 0346	 R 0391	Exp(B)
MEDSCHL: Variable AG AN	D65 YEAR. B .1400 2711	APP: Variable S.E. .0662 1890	97.00 s in the Wald 4.4662 2.0584	Equation df 1	 Sig .0346	R .0391	Exp(B) 1.1502 1.3114
Variable AG AN	D65 YEAR. B .1400 .2711 1771	APP: Variable S.E. .0662 .1890 2403	97.00 s in the Wald 4.4662 2.0584 5431	Equation df 1 1	Sig .0346 .1514 4612	R .0391 .0060	Exp(B) 1.1502 1.3114 1.1937
Variable AG AN NONSCIA	D65 YEAR. B .1400 .2711 .1771 - 5834	APP: Variable S.E. .0662 .1890 .2403 3679	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147	Equation df 1 1 1	Sig .0346 .1514 .4612	R .0391 .0060 .0000	Exp(B) 1.1502 1.3114 1.1937 5580
Variable AG AN NONSCIA RESITS GSTAKEN	D65 YEAR. B .1400 .2711 .1771 5834 2626	APP: Variable S.E. .0662 .1890 .2403 .3679 2431	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673	Equation df 1 1 1 1	Sig .0346 .1514 .4612 .1128 2800	R .0391 .0060 .0000 0179	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003
Variable AG AN NONSCIA RESITS GSTAKEN CSCRADE1	D65 YEAR. B .1400 .2711 .1771 5834 .2626 1251	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 1609	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 6048	Equation df 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 4367	R .0391 .0060 .0000 0179 .0000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333
Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 4491	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8702	Equation df 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367	R .0391 .0060 .0000 0179 .0000 .0000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669
Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN ADDDATE1	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 1225	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.2822	Equation df 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902	R .0391 .0060 .0000 0179 .0000 .0000 .0232 0676	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 6850
Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 DREVADD	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 2616	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2721	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 9.172	Equation df 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022	R .0391 .0060 .0000 0179 .0000 .0000 .0232 0676	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2000
Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSUDNCE	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 0161	APP: Variable S.E. .0662 .1890 .2403 .2403 .2431 .1609 .2651 .1235 .2731	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .077	Equation df 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0162
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 2207	APP: Variable S.E. .0662 .1890 .2403 .2403 .2431 .1609 .2651 .1235 .2731 .1930	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070	Equation df 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 .0230	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6772
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2000	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876	Equation df 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 CEW1	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965	Equation df 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773 .8122
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 .0000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773 .8122 1.0311
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 .0000 0934	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773 .8122 1.0311 .2597
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2	B B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 .2021	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128	R .0391 .0060 .0000 0179 .0000 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 0934 .0000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 5261	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848 .2238	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189 5.5269	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128 .0187	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 0934 .0000 0468	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180 .5909 1.2005
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND	B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 5261 .2673	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848 .2238 .2188	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189 5.5269 1.4922	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128 .0187 .2219	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 0934 .0000 0468 .0000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180 .5909 1.3065 1.005
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE	B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 5261 .2673 .6454	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848 .2238 .2188 .3941	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189 5.5269 1.4922 2.6815	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128 .0187 .2219 .1015	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 0934 .0000 0468 .0000 .0206	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180 .5909 1.3065 1.9067
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE GRAMMAR	B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 5261 .2673 .6454 2544	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848 .2238 .2188 .3941 .2681	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189 5.5269 1.4922 2.6815 .9007	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128 .0187 .2219 .0187 .2219 .1015 .3426	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 0934 .0000 0468 .0000 .0206 .0206	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180 .5909 1.3065 1.9067 .7754
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE GRAMMAR OTHSCHL	B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 5261 .2673 .6454 2544 .3831	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848 .2238 .2188 .3941 .2681 .2697	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189 5.5269 1.4922 2.6815 .9007 2.0180	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128 .0187 .2219 .1015 .3426 .1554	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 0934 .0000 0468 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180 .5909 1.3065 1.9067 .7754 1.4668
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE GRAMMAR OTHSCHL LOCAL	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 5261 .2673 .6454 2544 .3831 1.7178	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848 .2238 .2188 .3941 .2681 .2697 .2319	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189 5.5269 1.4922 2.6815 .9007 2.0180 54.8531	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128 .0187 .2219 .1015 .3426 .1554 .0000	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 0934 .0000 0468 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180 .5909 1.3065 1.9067 .7754 1.4668 5.5725
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE GRAMMAR OTHSCHL LOCAL SHN	D65 YEAR. B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 5261 .2673 .6454 2544 .3831 1.7178 .4912	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848 .2238 .2188 .3941 .2681 .2697 .2319 .1487	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189 5.5269 1.4922 2.6815 .9007 2.0180 54.8531 10.9130	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128 .0187 .2219 .1015 .3426 .1554 .0000 .0010	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0000 0206 .0000 .0000 0934 .0000 0468 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .00000 .00000 .0000 .00000 .0000 .0000 .00000 .0000 .0000 .0000 .00000 .0000 .0000 .0000 .0000 .00000 .00000 .00000 .00000 .0000 .0000 .00000 .0000 .0000 .0000 .00000 .0000 .0000 .0000 .0000 .00000 .0000 .0000 .0000 .00000 .0000 .0000 .00000 .0000 .0000 .0000 .00000 .00000 .00000 .000000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180 .5909 1.3065 1.9067 .7754 1.4668 5.5725 1.6343
MEDSCHL: Variable AG AN NONSCIA RESITS GSTAKEN GSGRADE1 ASN APPDATE1 PREVAPP INSURNCE LE4MED MEDAPP6 SEX1 MATURE SOCIAL2 ETHNIC3 INDEPEND FEHE GRAMMAR OTHSCHL LOCAL SHN SHG	B .1400 .2711 .1771 5834 .2626 .1251 .4491 3784 .2616 .0161 3897 2080 .0307 -1.3481 0856 5261 .2673 .6454 2544 .3831 1.7178 .4912 1.8133	APP: Variable S.E. .0662 .1890 .2403 .3679 .2431 .1609 .2651 .1235 .2731 .1930 .2377 .3304 .1498 .3362 .0848 .2238 .2188 .3941 .2681 .2697 .2319 .1487 .2118	97.00 s in the Wald 4.4662 2.0584 .5431 2.5147 1.1673 .6048 2.8703 9.3823 .9172 .0070 2.6876 .3965 .0419 16.0817 1.0189 5.5269 1.4922 2.6815 .9007 2.0180 54.8531 10.9130 73.3103	Equation df 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sig .0346 .1514 .4612 .1128 .2800 .4367 .0902 .0022 .3382 .9334 .1011 .5289 .8378 .0001 .3128 .0187 .2219 .1015 .3426 .1554 .0000 .0010 .0000	R .0391 .0060 .0000 0179 .0000 .0232 0676 .0000 .0206 .0000 0206 .0000 0934 .0000 0934 .0000 0468 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000 .0206 .0000	Exp(B) 1.1502 1.3114 1.1937 .5580 1.3003 1.1333 1.5669 .6850 1.2990 1.0163 .6773 .8122 1.0311 .2597 .9180 .5909 1.3065 1.9067 .7754 1.4668 5.5725 1.6343 6.1304

E56: The University of Edinburgh{tc "E56: The University of Edinburgh" $\1$ 3}

MEDSCHL: E56 YEARAPP: 96.00

		Variable	es in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.6060	.0836	52.5001	1	.0000	.1572	1.8332
AN	.5468	.1364	16.0687	1	.0001	.0830	1.7277
NONSCIA	.2078	.1830	1.2899	1	.2561	.0000	1.2310
RESITS	.1784	.5416	.1085	1	.7419	.0000	1.1953
GSTAKEN	2805	.2296	1.4925	1	.2218	.0000	.7554
GSGRADE1	.4437	.2051	4.6786	1	.0305	.0362	1.5585
ASN	.0977	.1430	.4668	1	.4945	.0000	1.1026
APPDATE1	5557	.1125	24.3834	1	.0000	1046	.5737
PREVAPP	.3462	.2966	1.3623	1	.2431	.0000	1.4137
INSURNCE	2486	.1596	2.4268	1	.1193	0144	.7799
LE4MED	5352	.2173	6.0657	1	.0138	0446	.5855
MEDAPP6	.1289	.3086	.1745	1	.6761	.0000	1.1376
SEX1	.1770	.1272	1.9373	1	.1640	.0000	1.1936
MATURE	3753	.4031	.8667	1	.3519	.0000	.6871
SOCIAL2	1062	.0820	1.6775	1	.1953	.0000	.8992
ETHNIC3	3886	.1835	4.4824	1	.0342	0348	.6780
INDEPEND	.2783	.1714	2.6344	1	.1046	.0176	1.3208
FEHE	0881	.4367	.0407	1	.8402	.0000	.9157
GRAMMAR	.3028	.2366	1.6374	1	.2007	.0000	1.3536
OTHSCHL	0219	.2293	.0091	1	.9239	.0000	.9783
LOCAL	.5633	.2102	7.1849	1	.0074	.0504	1.7565
SHN	.4781	.1543	9.5962	1	.0019	.0610	1.6130
SHG	3.2045	.3118	105.5988	1	.0000	.2251	24.6433
Constant	-28.3991	2.6438	115.3898	1	.0000		

MEDSCHL:	E56	YEARAPP:	97.	00

		Variable	es in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.6980	.0900	60.1337	1	.0000	.1635	2.0097
AN	1.0479	.1321	62.9440	1	.0000	.1674	2.8515
NONSCIA	2300	.1693	1.8454	1	.1743	.0000	.7945
RESITS	4534	.5319	.7264	1	.3940	.0000	.6355
GSTAKEN	2899	.1928	2.2612	1	.1327	0110	.7484
GSGRADE1	.2465	.1654	2.2206	1	.1362	.0101	1.2795
ASN	.1634	.1523	1.1509	1	.2834	.0000	1.1775
APPDATE1	4099	.0999	16.8234	1	.0000	0826	.6637
PREVAPP	1896	.3176	.3563	1	.5506	.0000	.8273
INSURNCE	4298	.1568	7.5092	1	.0061	0503	.6507
LE4MED	2676	.2344	1.3032	1	.2536	.0000	.7652
MEDAPP6	1598	.3082	.2688	1	.6041	.0000	.8523
SEX1	.4713	.1247	14.2743	1	.0002	.0751	1.6021
MATURE	.5940	.3483	2.9089	1	.0881	.0204	1.8112
SOCIAL2	0206	.0742	.0771	1	.7813	.0000	.9796
ETHNIC3	3361	.1701	3.9014	1	.0482	0296	.7146
INDEPEND	.1880	.1626	1.3367	1	.2476	.0000	1.2069
FEHE	4087	.4017	1.0349	1	.3090	.0000	.6645
GRAMMAR	1364	.2301	.3513	1	.5534	.0000	.8725
OTHSCHL	0906	.2289	.1565	1	.6924	.0000	.9134
LOCAL	.4414	.1963	5.0582	1	.0245	.0375	1.5550
SHN	.4175	.1416	8.6894	1	.0032	.0555	1.5181
SHG	3.4117	.3129	118.8650	1	.0000	.2319	30.3165
Constant	-31.9763	2.6359	147.1635	1	.0000		

G28: Glasgow University{tc "G28: Glasgow University" \1 3}

MEDSCHL: G28 YEARAPP:	96.00
-----------------------	-------

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.3612	.0701	26.5330	1	.0000	.1293	1.4350
AN	3898	.2066	3.5602	1	.0592	0326	.6772
NONSCIA	.1216	.2848	.1824	1	.6693	.0000	1.1293
RESITS	4398	.3963	1.2316	1	.2671	.0000	.6442
GSTAKEN	.7237	.2825	6.5615	1	.0104	.0558	2.0620
GSGRADE1	.0131	.2363	.0031	1	.9557	.0000	1.0132
ASN	.3616	.2769	1.7049	1	.1916	.0000	1.4356
APPDATE1	4499	.1459	9.5047	1	.0020	0715	.6377
PREVAPP	2119	.3044	.4843	1	.4865	.0000	.8091
INSURNCE	5781	.1937	8.9108	1	.0028	0686	.5610
LE4MED	-1.1906	.2337	25.9624	1	.0000	1278	.3040
MEDAPP6	2749	.3731	.5431	1	.4611	.0000	.7596
SEX1	.5437	.1511	12.9494	1	.0003	.0864	1.7223
MATURE	2903	.3419	.7208	1	.3959	.0000	.7481
SOCIAL2	0030	.0911	.0011	1	.9734	.0000	.9970
ETHNIC3	9034	.2565	12.4085	1	.0004	0842	.4052
INDEPEND	.4615	.2115	4.7622	1	.0291	.0434	1.5865
FEHE	.3235	.4242	.5817	1	.4457	.0000	1.3820
GRAMMAR	0258	.2896	.0080	1	.9289	.0000	.9745
OTHSCHL	4567	.2724	2.8110	1	.0936	0235	.6333
LOCAL	.8174	.2327	12.3409	1	.0004	.0840	2.2647
SHN	.4136	.1366	9.1717	1	.0025	.0699	1.5122
SHG	1.4234	.2074	47.0895	1	.0000	.1753	4.1511
Constant	-10.0597	2.0727	23.5561	1	.0000		

MEDSCHL: G28 YEARAPP: 97.00

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4079	.0852	22.9262	1	.0000	.1233	1.5036
AN	1221	.2099	.3382	1	.5609	.0000	.8851
NONSCIA	.1208	.2623	.2119	1	.6453	.0000	1.1284
RESITS	3451	.5675	.3698	1	.5431	.0000	.7081
GSTAKEN	.1750	.2740	.4078	1	.5231	.0000	1.1912
GSGRADE1	0506	.2268	.0498	1	.8234	.0000	.9506
ASN	.0058	.2888	.0004	1	.9841	.0000	1.0058
APPDATE1	4604	.1264	13.2721	1	.0003	0905	.6311
PREVAPP	.0126	.4196	.0009	1	.9761	.0000	1.0127
INSURNCE	2232	.1947	1.3139	1	.2517	.0000	.8000
LE4MED	9436	.2566	13.5259	1	.0002	0915	.3892
MEDAPP6	.2821	.3551	.6314	1	.4268	.0000	1.3260
SEX1	.5254	.1526	11.8485	1	.0006	.0846	1.6911
MATURE	6093	.3788	2.5867	1	.1078	0207	.5437
SOCIAL2	.0363	.0894	.1650	1	.6846	.0000	1.0370
ETHNIC3	4745	.2480	3.6598	1	.0557	0347	.6222
INDEPEND	1228	.2094	.3440	1	.5575	.0000	.8844
FEHE	4028	.4617	.7610	1	.3830	.0000	.6685
GRAMMAR	2954	.2866	1.0619	1	.3028	.0000	.7442
OTHSCHL	6435	.3006	4.5811	1	.0323	0433	.5255
LOCAL	.8819	.2336	14.2464	1	.0002	.0944	2.4154
SHN	.2745	.1339	4.2044	1	.0403	.0400	1.3159
SHG	1.3165	.2228	34.9224	1	.0000	.1547	3.7305
Constant	-9.9	890	2.1725	21.14	12	1	.0000

I50: Imperial College of Science, Technology and Medicine (University of London){tc "I50: Imperial College of Science, Technology and Medicine (University of London)" $\1 3$ }

MEDSCHL: I50 YEARAPP: 96.00

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.3518	.0541	42.2662	1	.0000	.1516	1.4216
AN	.2323	.1226	3.5927	1	.0580	.0302	1.2615
NONSCIA	.2620	.1639	2.5551	1	.1099	.0178	1.2995
RESITS	2163	.2851	.5757	1	.4480	.0000	.8055
GSTAKEN	.0436	.1848	.0557	1	.8135	.0000	1.0446
GSGRADE1	.3480	.1487	5.4785	1	.0193	.0446	1.4162
ASN	.2045	.1279	2.5581	1	.1097	.0179	1.2270
APPDATE1	1340	.1083	1.5295	1	.2162	.0000	.8746
PREVAPP	.1322	.2435	.2950	1	.5870	.0000	1.1414
INSURNCE	7681	.1957	15.4030	1	.0001	0875	.4639
LE4MED	3610	.3089	1.3660	1	.2425	.0000	.6970
MEDAPP6	0561	.3065	.0335	1	.8549	.0000	.9455
SEX1	.2847	.1356	4.4054	1	.0358	.0371	1.3293
MATURE	8346	.3158	6.9856	1	.0082	0534	.4341
SOCIAL2	2036	.0838	5.9064	1	.0151	0472	.8158
ETHNIC3	8352	.1496	31.1477	1	.0000	1290	.4338
INDEPEND	.0931	.1887	.2436	1	.6216	.0000	1.0976
FEHE	-1.3475	.4519	8.8910	1	.0029	0627	.2599
GRAMMAR	.2766	.2408	1.3202	1	.2506	.0000	1.3187
OTHSCHL	1737	.2331	.5552	1	.4562	.0000	.8405
LOCAL	.0603	.1523	.1570	1	.6919	.0000	1.0622
Constant	-4.2299	.9814	18.5776	1	.0000		

MEDSCHL:	I50	YEARAPP:	97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4639	.0652	50.6533	1	.0000	.1772	1.5903
AN	.1787	.1469	1.4790	1	.2239	.0000	1.1956
NONSCIA	.2214	.1738	1.6220	1	.2028	.0000	1.2478
RESITS	.3378	.3162	1.1417	1	.2853	.0000	1.4019
GSTAKEN	.0239	.1921	.0155	1	.9010	.0000	1.0242
GSGRADE1	.1777	.1570	1.2822	1	.2575	.0000	1.1945
ASN	.1011	.1415	.5106	1	.4749	.0000	1.1064
APPDATE1	0257	.1147	.0502	1	.8227	.0000	.9746
PREVAPP	5791	.3205	3.2653	1	.0708	0286	.5604
INSURNCE	3597	.1825	3.8871	1	.0487	0349	.6979
LE4MED	2077	.3492	.3538	1	.5520	.0000	.8125
MEDAPP6	7141	.4981	2.0553	1	.1517	0060	.4896
SEX1	.5459	.1482	13.5638	1	.0002	.0864	1.7261
MATURE	9593	.4182	5.2622	1	.0218	0459	.3832
SOCIAL2	2866	.0920	9.7168	1	.0018	0706	.7508
ETHNIC3	-1.0294	.1662	38.3565	1	.0000	1531	.3572
INDEPEND	.0124	.1922	.0042	1	.9486	.0000	1.0125
FEHE	-1.1647	.4344	7.1885	1	.0073	0579	.3120
GRAMMAR	2452	.2581	.9025	1	.3421	.0000	.7826
OTHSCHL	5804	.2562	5.1319	1	.0235	0449	.5597
LOCAL	1266	.1575	.6456	1	.4217	.0000	.8811
Constant	-4.7927	1.1297	17.9987	1	.0000		

K72: King's College School of Medicine and Dentistry (University of London){tc "K72: King's College School of Medicine and Dentistry (University of London)" $\1 3$ }

MEDSCHL:	К72	YEARAPP:	96.00
----------	-----	----------	-------

		Variable	es in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.6337	.0688	84.9165	1	.0000	.2189	1.8847
AN	.0620	.1406	.1944	1	.6593	.0000	1.0640
NONSCIA	.0352	.1888	.0347	1	.8522	.0000	1.0358
RESITS	6063	.3942	2.3662	1	.1240	0145	.5454
GSTAKEN	0512	.2205	.0540	1	.8163	.0000	.9501
GSGRADE1	.5046	.1865	7.3207	1	.0068	.0554	1.6564
ASN	.1635	.1440	1.2890	1	.2562	.0000	1.1777
APPDATE1	-1.3353	.1253	113.6187	1	.0000	2539	.2631
PREVAPP	0846	.2825	.0896	1	.7647	.0000	.9189
INSURNCE	3716	.1989	3.4892	1	.0618	0293	.6896
LE4MED	5176	.3322	2.4279	1	.1192	0157	.5959
MEDAPP6	4285	.3626	1.3962	1	.2374	.0000	.6515
SEX1	.4928	.1495	10.8654	1	.0010	.0716	1.6370
MATURE	.5100	.3042	2.8105	1	.0936	.0216	1.6653
SOCIAL2	0738	.0899	.6735	1	.4118	.0000	.9289
ETHNIC3	5928	.1643	13.0141	1	.0003	0798	.5528
INDEPEND	0568	.2248	.0638	1	.8006	.0000	.9448
FEHE	-1.2513	.4360	8.2359	1	.0041	0600	.2861
GRAMMAR	.0441	.2702	.0266	1	.8704	.0000	1.0451
OTHSCHL	0657	.2660	.0611	1	.8048	.0000	.9364
LOCAL	.0259	.1788	.0210	1	.8848	.0000	1.0262
Constant	-6.0540	1.2391	23.8696	1	.0000		

MEDSCHL:	K72	YEARA	APP:	97.00				
			Variable	es in the	Equation			
			101210021					
Variable		В	S.E.	Wald	df	Sig	R	Exp(B)
٨C		4656	0670	48 2620	1	0000	1773	1 5930
AG	_	0379	1616	10.2020	1	.0000 8144	.1775	9628
MONGOTA		2105	1916	2 02/2	1	.0111	0251	1 26/1
DEGILG		.3103	.1336	4252	1	51/2	.0251	1 2268
CCTAVEN	_	1072	1075	.4255	1	2170	.0000	2200
CCCDADE1	_	0789	1529	.9979	1	6058	.0000	1 08209
J GN	_	.0705	1780	2504	1	6105	.0000	0122
אסא 1שייגרוסע	_	.0907	.1760	12 6000	1	.0103	- 0801	.9133
APPDAILL	_1	1701	.1100	7 2659	1	.0002	- 0592	2102
TNCUDNCE	-1	.1701	2065	17 5006	1	.0070	1020	.3103
INSURNCE	-	.0004	.2005	1 7010	1	1000	1030	.4205
	-	.4/13	.3544	1.7910	1	.1808	.0000	.0242
MEDAPP6		.0795	.3309	.055/	1	.8134	.0000	1.0828
SEXI		.6298	.1521	1/.14/3	1	.0000	.1015	1.8//2
MATURE	-	.6909	.34/3	3.95/2	1	.046/	0365	.5011
SOCIAL2	-	.0344	.0869	.1562	1	.692/	.0000	.9662
ETHNIC3	-	.7556	.1646	21.0736	1	.0000	1139	.4697
INDEPEND		.4827	.2236	4.6586	1	.0309	.0425	1.6204
FEHE	-	.0160	.3383	.0022	1	.9623	.0000	.9841
GRAMMAR		.4992	.2598	3.6924	1	.0547	.0339	1.6474
OTHSCHL	-	.1490	.2753	.2929	1	.5884	.0000	.8616
LOCAL		.0048	.1688	.0008	1	.9773	.0000	1.0048
Constant	-4	.4106	1.1893	13.7527	1	.0002		

L23: University of Leeds{tc "L23: University of Leeds" \1 3}

MEDSCHL: L23 YEARAPP: 96.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.2192	.0367	35.6799	1	.0000	.1086	1.2451
AN	.0503	.1029	.2395	1	.6246	.0000	1.0516
NONSCIA	.1611	.1252	1.6545	1	.1983	.0000	1.1748
RESITS	1315	.2153	.3729	1	.5414	.0000	.8768
GSTAKEN	.2366	.1108	4.5605	1	.0327	.0299	1.2669
GSGRADE1	.2349	.0714	10.8371	1	.0010	.0556	1.2648
ASN	.0315	.1033	.0932	1	.7601	.0000	1.0320
APPDATE1	2974	.0823	13.0492	1	.0003	0622	.7428
PREVAPP	4418	.2050	4.6452	1	.0311	0304	.6429
INSURNCE	3034	.1217	6.2141	1	.0127	0384	.7383
LE4MED	8065	.2494	10.4521	1	.0012	0544	.4464
MEDAPP6	4941	.2170	5.1835	1	.0228	0334	.6101
SEX1	.3609	.1017	12.5885	1	.0004	.0609	1.4346
MATURE	7783	.2674	8.4739	1	.0036	0476	.4592
SOCIAL2	1015	.0598	2.8820	1	.0896	0176	.9035
ETHNIC3	6137	.1226	25.0655	1	.0000	0899	.5413
INDEPEND	.2149	.1372	2.4520	1	.1174	.0126	1.2397
FEHE	8885	.2551	12.1296	1	.0005	0596	.4113
GRAMMAR	.1147	.1724	.4428	1	.5058	.0000	1.1216
OTHSCHL	4434	.1546	8.2287	1	.0041	0467	.6419
LOCAL	.0167	.1174	.0202	1	.8870	.0000	1.0168
Constant	-1.5550	.6955	4.9984	1	.0254		

MEDSCHL: L23 YEARAPP: 97.00

------ Variables in the Equation ------Variable B S.E. Wald df Sig R Exp(B)

 Variable
 B
 S.E.
 Waid
 df
 Sig
 R
 EXP(B)

 AG
 .2839
 .0424
 44.7233
 1
 .0000
 .1216
 1.3282

 AN
 -.0596
 .1083
 .3026
 1
 .5823
 .0000
 .9422

 NONSCIA
 .1518
 .1243
 1.4901
 1
 .2222
 .0000
 1.1639

 RESITS
 -.2327
 .2265
 1.0551
 1
 .3043
 .0000
 .7924

 GSTAKEN
 .1102
 .1137
 .9405
 1
 .3322
 .0000
 1.0903

 ASN
 .0384
 .1112
 .1193
 1
 .7298
 .0000
 1.0391

 APPDATE1
 -.2632
 .0808
 10.6127
 1
 .0011
 .0546
 .7686

 PREVAPP
 -.3207
 .2213
 2.1003
 1
 .1473
 .0059
 .7256

 INSURNCE
 -.4435
 .1235
 12.8944
 1
 .0003
 .0614
 .6418

 Le4MED
 -.5429
 .2708
 4.0176
 1
 .0450
 .0264
 .5811

L34: University of Leicester{tc "L34: University of Leicester" \1 3}

MEDSCHL:	L34	YEARAPP:	96.00
----------	-----	----------	-------

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.2678	.0406	43.5933	1	.0000	.1377	1.3070
AN	0459	.1290	.1266	1	.7220	.0000	.9551
NONSCIA	.2265	.1561	2.1072	1	.1466	.0070	1.2543
RESITS	-1.7299	.3228	28.7247	1	.0000	1104	.1773
GSTAKEN	.1955	.1400	1.9519	1	.1624	.0000	1.2160
GSGRADE1	.0396	.0862	.2114	1	.6457	.0000	1.0404
ASN	0619	.1297	.2278	1	.6332	.0000	.9400
APPDATE1	6522	.0933	48.8709	1	.0000	1462	.5209
PREVAPP	2345	.2263	1.0733	1	.3002	.0000	.7910
INSURNCE	3934	.1454	7.3173	1	.0068	0492	.6748
LE4MED	2897	.2192	1.7459	1	.1864	.0000	.7485
MEDAPP6	7017	.2396	8.5729	1	.0034	0547	.4958
SEX1	.6113	.1199	26.0014	1	.0000	.1046	1.8428
MATURE	-1.1153	.2322	23.0701	1	.0000	0980	.3278
SOCIAL2	1053	.0687	2.3497	1	.1253	0126	.9000
ETHNIC3	5304	.1339	15.6948	1	.0001	0790	.5884
INDEPEND	1648	.1729	.9083	1	.3406	.0000	.8481
FEHE	3063	.2323	1.7385	1	.1873	.0000	.7362
GRAMMAR	2710	.2276	1.4183	1	.2337	.0000	.7626
OTHSCHL	3183	.1682	3.5815	1	.0584	0268	.7274
LOCAL	1432	.1360	1.1079	1	.2925	.0000	.8666
Constant	2.2930	.8079	8.0549	1	.0045		

MEDSCHL: L34 YEARAPP: 97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.2184	.0388	31.6973	1	.0000	.1097	1.2441
AN	2461	.1203	4.1861	1	.0408	0298	.7818
NONSCIA	.2463	.1322	3.4743	1	.0623	.0245	1.2793
RESITS	7860	.2409	10.6478	1	.0011	0592	.4557
GSTAKEN	.2136	.1208	3.1298	1	.0769	.0214	1.2382
GSGRADE1	.2264	.0781	8.4120	1	.0037	.0510	1.2541
ASN	.5019	.1174	18.2804	1	.0000	.0813	1.6518
APPDATE1	1121	.0809	1.9199	1	.1659	.0000	.8940
PREVAPP	3834	.2115	3.2857	1	.0699	0228	.6815
INSURNCE	2129	.1254	2.8826	1	.0895	0189	.8082
LE4MED	0298	.2369	.0158	1	.8999	.0000	.9706
MEDAPP6	0953	.2406	.1570	1	.6919	.0000	.9091
SEX1	.4192	.1085	14.9412	1	.0001	.0724	1.5208
MATURE	-1.9271	.2933	43.1597	1	.0000	1292	.1456
SOCIAL2	0525	.0592	.7855	1	.3755	.0000	.9489
ETHNIC3	4020	.1240	10.5124	1	.0012	0588	.6689
INDEPEND	0384	.1506	.0651	1	.7986	.0000	.9623
FEHE	3450	.2210	2.4382	1	.1184	0133	.7082
GRAMMAR	1322	.1786	.5481	1	.4591	.0000	.8761
OTHSCHL	1461	.1518	.9268	1	.3357	.0000	.8640
LOCAL	.3032	.1210	6.2824	1	.0122	.0417	1.3541
Constant	.4312	.7578	.3238	1	.5693		

L41: The University of Liverpool{tc "L41: The University of Liverpool" $\1$ 3}

MEDSCHL: L41 YEARAPP: 96.00

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4086	.0420	94.8706	1	.0000	.2109	1.5048
AN	.0855	.1304	.4303	1	.5118	.0000	1.0893
NONSCIA	0541	.1588	.1162	1	.7332	.0000	.9473
RESITS	0991	.2382	.1730	1	.6775	.0000	.9057
GSTAKEN	.3041	.1508	4.0654	1	.0438	.0315	1.3553
GSGRADE1	0275	.0908	.0921	1	.7616	.0000	.9728
ASN	.0846	.1400	.3652	1	.5456	.0000	1.0883
APPDATE1	4810	.1032	21.7463	1	.0000	0973	.6181
PREVAPP	9718	.2433	15.9573	1	.0001	0818	.3784
INSURNCE	3557	.1470	5.8559	1	.0155	0430	.7007
LE4MED	-1.2855	.2389	28.9535	1	.0000	1136	.2765
MEDAPP6	1264	.2416	.2737	1	.6008	.0000	.8813
SEX1	.4716	.1258	14.0524	1	.0002	.0760	1.6025
MATURE	-1.7282	.2576	45.0270	1	.0000	1436	.1776
SOCIAL2	0625	.0694	.8112	1	.3678	.0000	.9394
ETHNIC3	5442	.1499	13.1748	1	.0003	0732	.5803
INDEPEND	2356	.1939	1.4762	1	.2244	.0000	.7901
FEHE	1324	.2305	.3297	1	.5658	.0000	.8760
GRAMMAR	3856	.2248	2.9426	1	.0863	0212	.6800
OTHSCHL	1914	.1829	1.0951	1	.2953	.0000	.8258
LOCAL	.5345	.1494	12.8042	1	.0003	.0719	1.7066
Constant	.0938	.8041	.0136	1	.9071		

MEDSCHL: L41 YEARAPP: 97.00

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.3699	.0511	52.4855	1	.0000	.1555	1.4476
AN	.1811	.1298	1.9464	1	.1630	.0000	1.1986
NONSCIA	.3678	.1422	6.6840	1	.0097	.0474	1.4445
RESITS	6170	.2221	7.7196	1	.0055	0523	.5396
GSTAKEN	.3301	.1391	5.6305	1	.0177	.0417	1.3912
GSGRADE1	.1744	.0851	4.1939	1	.0406	.0324	1.1905
ASN	0915	.1403	.4250	1	.5145	.0000	.9126
APPDATE1	5263	.0940	31.3354	1	.0000	1185	.5908
PREVAPP	.1523	.2180	.4883	1	.4847	.0000	1.1645
INSURNCE	2674	.1389	3.7035	1	.0543	0286	.7654
LE4MED	-1.0637	.3552	8.9704	1	.0027	0578	.3452
MEDAPP6	3494	.2733	1.6347	1	.2011	.0000	.7051
SEX1	.2629	.1204	4.7640	1	.0291	.0364	1.3007
MATURE	0485	.2737	.0313	1	.8595	.0000	.9527
SOCIAL2	1134	.0682	2.7640	1	.0964	0191	.8928
ETHNIC3	5284	.1533	11.8813	1	.0006	0688	.5896
INDEPEND	.1212	.1730	.4904	1	.4837	.0000	1.1288
FEHE	.1122	.2460	.2081	1	.6483	.0000	1.1188
GRAMMAR	1179	.2053	.3296	1	.5659	.0000	.8888
OTHSCHL	1861	.1766	1.1111	1	.2918	.0000	.8302
LOCAL	.2971	.1391	4.5629	1	.0327	.0350	1.3459
Constant	-3.2434	.8425	14.8185	1	.0001		

M20: The University of Manchester{tc "M20: The University of Manchester" $\label{eq:m20}$ 3}

MEDSCHL:	M20	YEARAPP:	96.00
----------	-----	----------	-------

		Variables	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.2678	.0374	51.3701	1	.0000	.1314	1.3071
AN	.0590	.1108	.2837	1	.5943	.0000	1.0608
NONSCIA	.1034	.1245	.6889	1	.4065	.0000	1.1089
RESITS	7698	.3099	6.1703	1	.0130	0382	.4631
GSTAKEN	.3805	.1244	9.3555	1	.0022	.0507	1.4631
GSGRADE1	.4049	.0808	25.1276	1	.0000	.0899	1.4991
ASN	.0356	.1052	.1148	1	.7348	.0000	1.0363
APPDATE1	4386	.0810	29.3406	1	.0000	0978	.6449
PREVAPP	6306	.2402	6.8907	1	.0087	0414	.5322
INSURNCE	3781	.1220	9.5989	1	.0019	0515	.6852
LE4MED	9811	.2138	21.0641	1	.0000	0816	.3749
MEDAPP6	3759	.2269	2.7448	1	.0976	0161	.6866
SEX1	.4939	.1036	22.7284	1	.0000	.0851	1.6386
MATURE	5993	.2213	7.3328	1	.0068	0432	.5492
SOCIAL2	0733	.0582	1.5860	1	.2079	.0000	.9294
ETHNIC3	4790	.1159	17.0653	1	.0000	0726	.6194
INDEPEND	0751	.1439	.2720	1	.6020	.0000	.9277
FEHE	5680	.2288	6.1638	1	.0130	0382	.5666
GRAMMAR	3206	.1743	3.3851	1	.0658	0220	.7257
OTHSCHL	1927	.1542	1.5623	1	.2113	.0000	.8247
LOCAL	.0333	.1231	.0731	1	.7869	.0000	1.0338
Constant	-2.0169	.7349	7.5312	1	.0061		

MEDOOTT .	1420		07	$ \cap \cap $
MEDSCHL·	MZU	ILARAPP.	91.	00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.2370	.0375	39.8620	1	.0000	.1119	1.2674
AN	0486	.1048	.2153	1	.6427	.0000	.9526
NONSCIA	.1668	.1150	2.1036	1	.1470	.0059	1.1816
RESITS	.3390	.2633	1.6578	1	.1979	.0000	1.4036
GSTAKEN	.4819	.1190	16.3928	1	.0001	.0690	1.6191
GSGRADE1	.1879	.0714	6.9136	1	.0086	.0403	1.2067
ASN	.1677	.1147	2.1387	1	.1436	.0068	1.1826
APPDATE1	6409	.0757	71.7732	1	.0000	1518	.5268
PREVAPP	-1.0339	.2725	14.4013	1	.0001	0640	.3556
INSURNCE	2894	.1141	6.4342	1	.0112	0383	.7487
LE4MED	4389	.2208	3.9505	1	.0469	0254	.6448
MEDAPP6	9382	.2802	11.2103	1	.0008	0552	.3913
SEX1	.2069	.0997	4.3061	1	.0380	.0276	1.2299
MATURE	3952	.2291	2.9747	1	.0846	0179	.6735
SOCIAL2	0614	.0560	1.1984	1	.2736	.0000	.9405
ETHNIC3	4010	.1159	11.9643	1	.0005	0574	.6696
INDEPEND	.3042	.1351	5.0729	1	.0243	.0319	1.3556
FEHE	.2448	.2063	1.4073	1	.2355	.0000	1.2773
GRAMMAR	3200	.1662	3.7069	1	.0542	0238	.7261
OTHSCHL	1527	.1555	.9641	1	.3262	.0000	.8584
LOCAL	.0511	.1193	.1837	1	.6682	.0000	1.0525
Constant	-1.8392	.6857	7.1955	1	.0073		

N21: University of Newcastle-upon-Tyne{tc "N21: University of Newcastle-upon-Tyne" $\1 3$ }

MEDSCHL: N21 YEARAPP: 96.00

		Variable	s in the	Equation			
		101210020	5 111 0110				
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.7484	.0751	99.2740	1	.0000	.2353	2.1135
AN	.3943	.1513	6.7943	1	.0091	.0522	1.4833
NONSCIA	6680	.1808	13.6507	1	.0002	0814	.5127
RESITS	7037	.4021	3.0622	1	.0801	0246	.4948
GSTAKEN	.1547	.1758	.7744	1	.3788	.0000	1.1673
GSGRADE1	.3667	.1217	9.0750	1	.0026	.0635	1.4430
ASN	.1074	.1419	.5726	1	.4492	.0000	1.1134
APPDATE1	3203	.1131	8.0257	1	.0046	0586	.7260
PREVAPP	-1.2405	.3685	11.3321	1	.0008	0729	.2892
INSURNCE	0152	.1667	.0083	1	.9275	.0000	.9849
LE4MED	0465	.3053	.0232	1	.8788	.0000	.9545
MEDAPP6	0357	.3094	.0133	1	.9081	.0000	.9649
SEX1	.8124	.1520	28.5716	1	.0000	.1230	2.2533
MATURE	2150	.3490	.3795	1	.5379	.0000	.8066
SOCIAL2	1812	.0901	4.0455	1	.0443	0341	.8343
ETHNIC3	2578	.2094	1.5156	1	.2183	.0000	.7728
INDEPEND	0799	.1850	.1865	1	.6659	.0000	.9232
FEHE	6685	.3787	3.1170	1	.0775	0252	.5125
GRAMMAR	5129	.2681	3.6591	1	.0558	0307	.5987
OTHSCHL	2321	.2128	1.1889	1	.2756	.0000	.7929
LOCAL	.0712	.1641	.1884	1	.6643	.0000	1.0738
Constant	-9.4823	1.1946	63.0104	1	.0000		

MEDSCHL: N21 YEARAPP: 97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.5971	.0668	79.9160	1	.0000	.1950	1.8169
AN	.5482	.1389	15.5840	1	.0001	.0814	1.7301
NONSCIA	4291	.1521	7.9611	1	.0048	0539	.6511
RESITS	-1.4939	.3633	16.9073	1	.0000	0853	.2245
GSTAKEN	0415	.1528	.0737	1	.7860	.0000	.9594
GSGRADE1	.4667	.1077	18.7676	1	.0000	.0905	1.5948
ASN	.1204	.1423	.7167	1	.3972	.0000	1.1280
APPDATE1	3057	.0999	9.3632	1	.0022	0600	.7366
PREVAPP	5112	.3078	2.7585	1	.0967	0192	.5998
INSURNCE	2931	.1524	3.7013	1	.0544	0288	.7459
LE4MED	7431	.3765	3.8956	1	.0484	0304	.4756
MEDAPP6	.0173	.2906	.0036	1	.9525	.0000	1.0175
SEX1	.5016	.1329	14.2519	1	.0002	.0773	1.6513
MATURE	3117	.3132	.9910	1	.3195	.0000	.7322
SOCIAL2	1797	.0794	5.1195	1	.0237	0390	.8355
ETHNIC3	.0328	.1761	.0347	1	.8522	.0000	1.0334
INDEPEND	.0740	.1725	.1843	1	.6677	.0000	1.0768
FEHE	0651	.3018	.0465	1	.8294	.0000	.9370
GRAMMAR	1496	.2277	.4314	1	.5113	.0000	.8611
OTHSCHL	0874	.2047	.1824	1	.6694	.0000	.9163
LOCAL	.5448	.1439	14.3265	1	.0002	.0776	1.7242
Constant	-8.1803	1.0596	59.5967	1	.0000		

© CHMS

N84: The University of Nottingham{tc "N84: The University of Nottingham" $\1 3$ }

MEDSCHL: N84 YEARAPP: 96.00

		Variables	s in the	Equation			
				-			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.5865	.0828	50.1480	1	.0000	.1723	1.7977
AN	.4463	.1314	11.5428	1	.0007	.0767	1.5625
NONSCIA	1901	.1760	1.1676	1	.2799	.0000	.8268
RESITS	0299	.4522	.0044	1	.9474	.0000	.9706
GSTAKEN	0721	.1941	.1378	1	.7105	.0000	.9305
GSGRADE1	.1664	.1457	1.3033	1	.2536	.0000	1.1810
ASN	0337	.1292	.0680	1	.7942	.0000	.9669
APPDATE1	4926	.1212	16.5249	1	.0000	0947	.6110
PREVAPP	4566	.4189	1.1877	1	.2758	.0000	.6335
INSURNCE	3111	.1967	2.5021	1	.1137	0176	.7327
LE4MED	.3143	.2962	1.1265	1	.2885	.0000	1.3693
MEDAPP6	.3323	.2851	1.3584	1	.2438	.0000	1.3942
SEX1	.6399	.1486	18.5422	1	.0000	.1010	1.8963
MATURE	.9848	.3376	8.5087	1	.0035	.0634	2.6773
SOCIAL2	1925	.0919	4.3892	1	.0362	0384	.8249
ETHNIC3	5055	.1915	6.9701	1	.0083	0554	.6032
INDEPEND	1727	.1855	.8668	1	.3518	.0000	.8414
FEHE	5674	.3939	2.0745	1	.1498	0068	.5670
GRAMMAR	2540	.2421	1.1005	1	.2942	.0000	.7757
OTHSCHL	2539	.2290	1.2288	1	.2676	.0000	.7758
LOCAL	0716	.1709	.1757	1	.6751	.0000	.9309
Constant	-9.4336	1.2923	53.2908	1	.0000		

MEDSCHL: N84 YEARAPP: 97.00

VariableBS.E.WalddfSigRExp(B)AG.4837.079537.05471.0000.14041.6221AN.2573.13723.52011.0606.02921.2935NONSCIA.0716.1602.19951.6551.00001.0742RESITS-.2848.4023.50091.4791.0000.7522GSTAKEN.3252.17133.60211.0577.03001.3842GSGRADE1-.0248.1200.04261.8364.0000.9755ASN.4927.126215.24341.0001.08631.6368APPDATE1-.7282.120836.31351.0000.1389.4628PREVAPP-.1484.3860.14771.7007.0000.8621INSURNCE-.4558.18176.29211.0121.0491.6339LE4MED-.3254.3879.70351.4016.0000.7223MEDAPP6-.7623.44102.98751.0839-.0236.4666SEX1.6037.144317.50551.0000.9341.8289MATURE1.1673.355710.77131.0010.0702.3133SOCIAL2-.1846.08744.46411.0346.0372.8315ETHNIC3-.9004.197020.88771.0000.8718FEHE-

033: Oxford University{tc "033: Oxford University" \1 3}

MEDSCHL:	033	YEARAPP:	96.00
----------	-----	----------	-------

		Variables	in the	Equation			
				-			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.9709	.1805	28.9401	1	.0000	.2343	2.6404
AN	0444	.2399	.0343	1	.8531	.0000	.9565
NONSCIA	.2769	.3089	.8032	1	.3701	.0000	1.3190
RESITS	2.0593	.9892	4.3339	1	.0374	.0690	7.8402
GSTAKEN	-1.3591	.5518	6.0670	1	.0138	0910	.2569
GSGRADE1	.8768	.4811	3.3224	1	.0683	.0519	2.4033
ASN	0029	.2235	.0002	1	.9897	.0000	.9971
APPDATE1	.0159	.2610	.0037	1	.9515	.0000	1.0160
PREVAPP	3658	.7188	.2590	1	.6108	.0000	.6936
INSURNCE	2107	.3319	.4032	1	.5255	.0000	.8100
LE4MED	.1538	.5083	.0916	1	.7622	.0000	1.1663
MEDAPP6	7633	.6786	1.2652	1	.2607	.0000	.4661
SEX1	0379	.2540	.0223	1	.8814	.0000	.9628
MATURE	-5.5840	11.7118	.2273	1	.6335	.0000	.0038
SOCIAL2	3099	.1715	3.2656	1	.0707	0508	.7336
ETHNIC3	3670	.2886	1.6164	1	.2036	.0000	.6928
INDEPEND	4058	.3465	1.3717	1	.2415	.0000	.6664
FEHE	2692	.7063	.1453	1	.7030	.0000	.7640
GRAMMAR	1541	.4366	.1247	1	.7240	.0000	.8571
OTHSCHL	3716	.4807	.5976	1	.4395	.0000	.6896
LOCAL	3523	.2927	1.4491	1	.2287	.0000	.7030
Constant	-8.5053	12.0835	.4954	1	.4815		

MEDSCHL: 033 YEARAPP: 97.00

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.9597	.1887	25.8643	1	.0000	.2137	2.6109
AN	.6531	.2325	7.8873	1	.0050	.1062	1.9214
NONSCIA	3256	.3067	1.1270	1	.2884	.0000	.7221
RESITS	5908	1.1236	.2764	1	.5991	.0000	.5539
GSTAKEN	7814	.3821	4.1812	1	.0409	0646	.4578
GSGRADE1	.5801	.3352	2.9945	1	.0835	.0436	1.7863
ASN	.4394	.2411	3.3195	1	.0685	.0503	1.5517
APPDATE1	2.38E-05	.2528	.0000	1	1.0000	.0000	1.0000
PREVAPP	-1.0558	.8281	1.6255	1	.2023	.0000	.3479
INSURNCE	.1947	.3137	.3854	1	.5347	.0000	1.2150
LE4MED	.4365	.5998	.5298	1	.4667	.0000	1.5473
MEDAPP6	1.0619	.5407	3.8572	1	.0495	.0596	2.8919
SEX1	.0907	.2534	.1280	1	.7205	.0000	1.0949
MATURE	-5.0611	13.8151	.1342	1	.7141	.0000	.0063
SOCIAL2	1280	.1531	.6990	1	.4031	.0000	.8799
ETHNIC3	-1.0437	.3221	10.5004	1	.0012	1276	.3521
INDEPEND	2806	.3264	.7387	1	.3901	.0000	.7554
FEHE	-1.9129	1.0898	3.0812	1	.0792	0455	.1476
GRAMMAR	6170	.4313	2.0470	1	.1525	0095	.5395
OTHSCHL	2538	.4046	.3933	1	.5305	.0000	.7759
LOCAL	0110	.2729	.0016	1	.9678	.0000	.9890
Constant	-7.5285	14.1187	.2843	1	.5939		

Q50: Queen Mary and Westfield College (University of London){tc "Q50: Queen Mary and Westfield College (University of London)" $\1 3$ }

MEDSCHL: Q50 YEARAPP: 96.00

		Variables	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4072	.0453	80.8785	1	.0000	.1996	1.5026
AN	.0155	.1383	.0125	1	.9109	.0000	1.0156
NONSCIA	0287	.1669	.0295	1	.8636	.0000	.9717
RESITS	-2.1264	.3981	28.5244	1	.0000	1157	.1193
GSTAKEN	.0884	.1748	.2558	1	.6131	.0000	1.0924
GSGRADE1	.3109	.1223	6.4597	1	.0110	.0475	1.3646
ASN	.0375	.1380	.0739	1	.7857	.0000	1.0382
APPDATE1	4828	.1017	22.5492	1	.0000	1019	.6170
PREVAPP	9939	.2444	16.5391	1	.0000	0857	.3701
INSURNCE	1581	.1614	.9589	1	.3275	.0000	.8538
LE4MED	-1.3463	.3228	17.3915	1	.0000	0882	.2602
MEDAPP6	0569	.2963	.0369	1	.8477	.0000	.9447
SEX1	.4697	.1309	12.8787	1	.0003	.0741	1.5995
MATURE	-1.5357	.2934	27.3918	1	.0000	1132	.2153
SOCIAL2	1714	.0762	5.0666	1	.0244	0394	.8424
ETHNIC3	6830	.1414	23.3271	1	.0000	1038	.5051
INDEPEND	3168	.1870	2.8692	1	.0903	0209	.7285
FEHE	7729	.2667	8.3980	1	.0038	0568	.4617
GRAMMAR	.0372	.2246	.0274	1	.8686	.0000	1.0379
OTHSCHL	2419	.2061	1.3779	1	.2405	.0000	.7852
LOCAL	0755	.1473	.2630	1	.6080	.0000	.9273
Constant	.8658	.9505	.8297	1	.3624		

MEDSCHL: Q50 YEARAPP: 97.00

		Variables	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4346	.0435	99.9595	1	.0000	.1990	1.5444
AN	.0248	.1349	.0337	1	.8543	.0000	1.0251
NONSCIA	.1899	.1436	1.7471	1	.1862	.0000	1.2091
RESITS	-1.3112	.3470	14.2769	1	.0002	0704	.2695
GSTAKEN	.1286	.1421	.8195	1	.3653	.0000	1.1373
GSGRADE1	.2687	.1051	6.5370	1	.0106	.0428	1.3082
ASN	.1145	.1388	.6810	1	.4092	.0000	1.1214
APPDATE1	8523	.0929	84.0894	1	.0000	1821	.4264
PREVAPP	5779	.2339	6.1057	1	.0135	0407	.5611
INSURNCE	4715	.1387	11.5590	1	.0007	0621	.6240
LE4MED	8067	.2761	8.5384	1	.0035	0514	.4463
MEDAPP6	7686	.3356	5.2448	1	.0220	0362	.4637
SEX1	.3271	.1179	7.6952	1	.0055	.0480	1.3869
MATURE	7381	.2892	6.5115	1	.0107	0427	.4780
SOCIAL2	.0411	.0636	.4179	1	.5180	.0000	1.0420
ETHNIC3	8826	.1299	46.1282	1	.0000	1335	.4137
INDEPEND	0787	.1623	.2348	1	.6280	.0000	.9244
FEHE	7219	.2591	7.7611	1	.0053	0482	.4858
GRAMMAR	1996	.1844	1.1720	1	.2790	.0000	.8191
OTHSCHL	6261	.1886	11.0211	1	.0009	0604	.5346
LOCAL	0323	.1289	.0626	1	.8024	.0000	.9683
Constant	6516	.8370	.6060	1	.4363		

Q75: The Queen's University of Belfast{tc "Q75: The Queen's University of Belfast" $\1$ 3}

MEDSCHL:	Q75	YEARAPP:	96.00
----------	-----	----------	-------

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.8504	.1138	55.8278	1	.0000	.3283	2.3406
AN	.1514	.3763	.1618	1	.6875	.0000	1.1634
NONSCIA	0863	.4182	.0426	1	.8365	.0000	.9173
RESITS	-1.3047	.7642	2.9149	1	.0878	0428	.2712
GSTAKEN	.7031	1.1695	.3615	1	.5477	.0000	2.0200
GSGRADE1	1.5276	1.4252	1.1489	1	.2838	.0000	4.6072
ASN	.6752	.7520	.8063	1	.3692	.0000	1.9645
APPDATE1	6393	.2710	5.5660	1	.0183	0845	.5277
PREVAPP	1.9421	.7205	7.2665	1	.0070	.1027	6.9736
INSURNCE	.3962	.4366	.8235	1	.3642	.0000	1.4861
LE4MED	2115	.4458	.2251	1	.6352	.0000	.8094
MEDAPP6	.0683	.7825	.0076	1	.9305	.0000	1.0706
SEX1	.2553	.3186	.6419	1	.4230	.0000	1.2908
MATURE	4993	.6166	.6558	1	.4180	.0000	.6069
SOCIAL2	.0889	.1762	.2546	1	.6138	.0000	1.0930
ETHNIC3	-1.4394	.6325	5.1785	1	.0229	0798	.2371
INDEPEND	.1272	1.0939	.0135	1	.9074	.0000	1.1357
FEHE	-1.4606	.8448	2.9891	1	.0838	0445	.2321
GRAMMAR	.4090	.7136	.3285	1	.5665	.0000	1.5054
OTHSCHL	8927	.7236	1.5218	1	.2173	.0000	.4096
LOCAL	1.0532	.5309	3.9356	1	.0473	.0622	2.8667
Constant	-8.5983	5.8261	2.1780	1	.1400		

MEDSCHL: Q75 YEARAPP: 97.00

		Variables	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.8103	.1148	49.7995	1	.0000	.2982	2.2485
AN	.8991	.3665	6.0202	1	.0141	.0865	2.4574
NONSCIA	.1045	.3857	.0734	1	.7865	.0000	1.1101
RESITS	-1.2962	.6844	3.5865	1	.0583	0543	.2736
GSTAKEN	1.3925	1.1175	1.5528	1	.2127	.0000	4.0248
GSGRADE1	8140	.8041	1.0248	1	.3114	.0000	.4431
ASN	2.6603	1.0372	6.5785	1	.0103	.0923	14.3006
APPDATE1	0934	.2503	.1392	1	.7091	.0000	.9108
PREVAPP	.1750	.7151	.0599	1	.8066	.0000	1.1913
INSURNCE	.1780	.4384	.1648	1	.6848	.0000	1.1948
LE4MED	4287	.4835	.7859	1	.3753	.0000	.6514
MEDAPP6	.1996	.6582	.0920	1	.7616	.0000	1.2210
SEX1	.5780	.3024	3.6532	1	.0560	.0555	1.7825
MATURE	-1.5010	.6695	5.0259	1	.0250	0750	.2229
SOCIAL2	.1148	.1958	.3437	1	.5577	.0000	1.1216
ETHNIC3	-1.3488	.6677	4.0814	1	.0434	0622	.2595
INDEPEND	.6627	1.2043	.3028	1	.5821	.0000	1.9399
FEHE	-2.0777	.9106	5.2061	1	.0225	0772	.1252
GRAMMAR	.4086	.6221	.4314	1	.5113	.0000	1.5047
OTHSCHL	8501	.7104	1.4319	1	.2315	.0000	.4274
LOCAL	1.2220	.6027	4.1111	1	.0426	.0627	3.3940
Constant	-2.9446	3.5981	.6697	1	.4131		

R60: Royal Free Hospital School of Medicine (University of London){tc "R60: Royal Free Hospital School of Medicine (University of London)" \1 3}

MEDSCHL: R60 YEARAPP: 96.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.6691	.0721	86.0810	1	.0000	.2490	1.9525
AN	.1885	.1332	2.0018	1	.1571	.0012	1.2074
NONSCIA	0085	.2047	.0017	1	.9669	.0000	.9915
RESITS	7331	.2441	9.0223	1	.0027	0720	.4804
GSTAKEN	0722	.2302	.0984	1	.7537	.0000	.9303
GSGRADE1	.3875	.1780	4.7383	1	.0295	.0449	1.4733
ASN	.0651	.1751	.1381	1	.7102	.0000	1.0672
APPDATE1	5620	.1233	20.7886	1	.0000	1177	.5701
PREVAPP	4354	.2336	3.4733	1	.0624	0330	.6470
INSURNCE	1080	.2180	.2452	1	.6205	.0000	.8977
LE4MED	1133	.3809	.0885	1	.7661	.0000	.8929
MEDAPP6	5272	.4272	1.5232	1	.2171	.0000	.5903
SEX1	.2303	.1625	2.0071	1	.1566	.0023	1.2589
MATURE	9956	.3467	8.2473	1	.0041	0679	.3695
SOCIAL2	1103	.0970	1.2931	1	.2555	.0000	.8956
ETHNIC3	6740	.1741	14.9836	1	.0001	0979	.5097
INDEPEND	.1235	.2632	.2202	1	.6389	.0000	1.1315
FEHE	6357	.4147	2.3498	1	.1253	0161	.5296
GRAMMAR	.4807	.3287	2.1392	1	.1436	.0101	1.6172
OTHSCHL	0534	.2952	.0327	1	.8565	.0000	.9480
LOCAL	.0324	.1912	.0288	1	.8652	.0000	1.0330
Constant	-5.2063	1.1961	18.9449	1	.0000		

MEDSCHL: R60 YEARAPP: 97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4870	.0617	62.3026	1	.0000	.2059	1.6275
AN	.2172	.1503	2.0874	1	.1485	.0078	1.2426
NONSCIA	1900	.2036	.8706	1	.3508	.0000	.8270
RESITS	-1.0546	.2286	21.2832	1	.0000	1164	.3483
GSTAKEN	.3121	.2138	2.1304	1	.1444	.0096	1.3663
GSGRADE1	.5808	.1686	11.8680	1	.0006	.0833	1.7875
ASN	.1826	.1596	1.3092	1	.2525	.0000	1.2004
APPDATE1	5039	.1105	20.7754	1	.0000	1149	.6042
PREVAPP	.0387	.2217	.0304	1	.8615	.0000	1.0394
INSURNCE	4503	.2142	4.4168	1	.0356	0412	.6375
LE4MED	7045	.4263	2.7309	1	.0984	0227	.4944
MEDAPP6	2560	.3566	.5152	1	.4729	.0000	.7742
SEX1	.5299	.1543	11.7876	1	.0006	.0829	1.6988
MATURE	2165	.2772	.6100	1	.4348	.0000	.8053
SOCIAL2	0662	.0899	.5421	1	.4616	.0000	.9359
ETHNIC3	2440	.1635	2.2270	1	.1356	0126	.7835
INDEPEND	1034	.2335	.1960	1	.6580	.0000	.9018
FEHE	6680	.3524	3.5941	1	.0580	0335	.5127
GRAMMAR	.1874	.3236	.3354	1	.5625	.0000	1.2061
OTHSCHL	4825	.2725	3.1354	1	.0766	0283	.6172
LOCAL	0964	.1824	.2794	1	.5971	.0000	.9081
Constant	-5.5923	1.0769	26.9653	1	.0000		

S18: The University of Sheffield{tc "S18: The University of Sheffield" $\1$ 3}

MEDSCHL: S18 YEARAPP: 96.00

		Variables	s in the	Equation			
				-			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.5799	.0553 1	.09.7581	1	.0000	.2154	1.7858
AN	.0740	.1223	.3660	1	.5452	.0000	1.0768
NONSCIA	.3526	.1359	6.7317	1	.0095	.0451	1.4228
RESITS	7774	.2800	7.7055	1	.0055	0496	.4596
GSTAKEN	.0005	.1397	.0000	1	.9970	.0000	1.0005
GSGRADE1	.0192	.0859	.0502	1	.8228	.0000	1.0194
ASN	0604	.1207	.2505	1	.6167	.0000	.9414
APPDATE1	3271	.0964	11.5200	1	.0007	0640	.7210
PREVAPP	3499	.2579	1.8398	1	.1750	.0000	.7048
INSURNCE	0636	.1439	.1956	1	.6583	.0000	.9383
LE4MED	2129	.2436	.7642	1	.3820	.0000	.8082
MEDAPP6	.2592	.2400	1.1671	1	.2800	.0000	1.2959
SEX1	.3933	.1216	10.4612	1	.0012	.0604	1.4818
MATURE	0498	.2471	.0406	1	.8404	.0000	.9515
SOCIAL2	.0604	.0679	.7901	1	.3741	.0000	1.0623
ETHNIC3	5855	.1584	13.6653	1	.0002	0709	.5568
INDEPEND	2094	.1597	1.7180	1	.1900	.0000	.8111
FEHE	4958	.2561	3.7474	1	.0529	0274	.6091
GRAMMAR	5958	.2328	6.5468	1	.0105	0443	.5511
OTHSCHL	3434	.1707	4.0473	1	.0442	0297	.7094
LOCAL	.2305	.1379	2.7941	1	.0946	.0185	1.2592
Constant	-5.2670	.8977	34.4217	1	.0000		

MEDSCHL:	S18	YEAR	Abb:	97.00				
			Variable	es in the	Equation			
Variable		В	S.E.	Wald	df	Sig	R	Exp(B)
AG		.4770	.0520	84.2952	1	.0000	.1791	1.6113
AN		.1407	.1121	1.5737	1	.2097	.0000	1.1510
NONSCIA		.1567	.1245	1.5836	1	.2082	.0000	1.1697
RESITS		2922	.1968	2.2055	1	.1375	0090	.7466
GSTAKEN		.1568	.1321	1.4082	1	.2354	.0000	1.1698
GSGRADE1		.2281	.0851	7.1805	1	.0074	.0449	1.2562
ASN		.1205	.1191	1.0243	1	.3115	.0000	1.1281
APPDATE1		0556	.0819	.4612	1	.4971	.0000	.9459
PREVAPP		.0741	.1966	.1419	1	.7064	.0000	1.0769
INSURNCE		8885	.1470	36.5293	1	.0000	1160	.4113
LE4MED		4326	.2456	3.1020	1	.0782	0207	.6488
MEDAPP6		5350	.2469	4.6953	1	.0302	0324	.5857
SEX1		.6161	.1132	29.6283	1	.0000	.1038	1.8516
MATURE		.3430	.2128	2.5968	1	.1071	.0153	1.4091
SOCIAL2		0419	.0626	.4491	1	.5028	.0000	.9589
ETHNIC3		6759	.1421	22.6265	1	.0000	0897	.5087
INDEPEND		2162	.1522	2.0179	1	.1555	0026	.8056
FEHE		3936	.2315	2.8914	1	.0891	0186	.6746
GRAMMAR		0107	.2068	.0027	1	.9586	.0000	.9893
OTHSCHL		2935	.1670	3.0887	1	.0788	0206	.7456
LOCAL		.2724	.1276	4.5582	1	.0328	.0316	1.3131
Constant	-	6.7493	.8178	68.1145	1	.0000		

S27: University of Southampton{tc "S27: University of Southampton" \1 3}

MEDSCHL: S27 YEARAPP: 96.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4972	.0671	54.8756	1	.0000	.1819	1.6440
AN	.6299	.1372	21.0698	1	.0000	.1093	1.8774
NONSCIA	.1985	.1763	1.2677	1	.2602	.0000	1.2195
RESITS	-2.2570	.4236	28.3878	1	.0000	1285	.1047
GSTAKEN	.0820	.1951	.1764	1	.6745	.0000	1.0854
GSGRADE1	.0855	.1523	.3153	1	.5745	.0000	1.0893
ASN	1532	.1505	1.0358	1	.3088	.0000	.8580
APPDATE1	3263	.1195	7.4530	1	.0063	0584	.7216
PREVAPP	2.2395	.2534	78.1065	1	.0000	.2183	9.3884
INSURNCE	2696	.1937	1.9365	1	.1641	.0000	.7637
LE4MED	.0044	.2861	.0002	1	.9876	.0000	1.0044
MEDAPP6	0882	.3494	.0637	1	.8007	.0000	.9156
SEX1	.0560	.1492	.1409	1	.7073	.0000	1.0576
MATURE	-1.9496	.3744	27.1103	1	.0000	1254	.1423
SOCIAL2	0288	.0899	.1030	1	.7483	.0000	.9716
ETHNIC3	8016	.1957	16.7760	1	.0000	0962	.4486
INDEPEND	2496	.1997	1.5625	1	.2113	.0000	.7791
FEHE	4868	.3210	2.3005	1	.1293	0137	.6146
GRAMMAR	2821	.2684	1.1052	1	.2931	.0000	.7542
OTHSCHL	0916	.2291	.1599	1	.6892	.0000	.9125
LOCAL	0384	.1688	.0516	1	.8202	.0000	.9624
Constant	-2.2041	1.1744	3.5223	1	.0605		

MEDSCHL: S27 YEARAPP: 97.00

------ Variables in the Equation ------Variable B S.E. Wald df Sig R Exp(B)

 Variable
 B
 S.E.
 Wald
 df
 Sig
 R
 Exp(B)

 AG
 .5992
 .0726
 68.0674
 1
 .0000
 .1953
 1.8207

 AN
 .1461
 .1546
 .8933
 1
 .3446
 .0000
 1.1574

 NONSCIA
 -.0927
 .1705
 .2956
 1
 .5867
 .0000
 .9115

 RESITS
 -1.8208
 .5039
 13.0582
 1
 .0003
 -.0799
 .1619

 GSTAKEN
 .2796
 .1824
 2.3491
 1
 .1254
 .0142
 1.3225

 GSGRADE1
 .2966
 .1471
 4.0660
 1
 .0438
 .0345
 1.3452

 ASN
 .1027
 .1516
 .4583
 1
 .4984
 .0000
 1.1081

 APPDATE1
 -1.5753
 .1312
 144.2373
 1
 .0000
 .2865
 .2069

 PREVAPP
 1.0576
 .2526
 17.5232
 1
 .0000
 .6588

 MEDAPP6
 -.7717
 .4158
 3.4438
 1
 .0635
 -.0289
 .4622

 < S36: University of St Andrews{tc "S36: University of St Andrews" \1 3}

MEDSCHL:	S36	YEARAPP:	96.00
----------	-----	----------	-------

		Variables	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.2774	.0880	9.9345	1	.0016	.1004	1.3197
AN	1370	.2693	.2588	1	.6110	.0000	.8720
NONSCIA	4710	.4572	1.0614	1	.3029	.0000	.6244
RESITS	-1.4176	.3774	14.1099	1	.0002	1241	.2423
GSTAKEN	.8461	.3390	6.2308	1	.0126	.0733	2.3306
GSGRADE1	.4381	.2400	3.3321	1	.0679	.0411	1.5498
ASN	.3735	.3391	1.2129	1	.2708	.0000	1.4528
APPDATE1	7233	.2194	10.8702	1	.0010	1062	.4851
PREVAPP	5707	.3679	2.4058	1	.1209	0227	.5652
INSURNCE	3005	.3192	.8862	1	.3465	.0000	.7405
LE4MED	-1.5072	.3382	19.8542	1	.0000	1506	.2215
MEDAPP6	6102	.6306	.9365	1	.3332	.0000	.5432
SEX1	.4637	.2305	4.0462	1	.0443	.0510	1.5900
MATURE	-1.3747	.5270	6.8038	1	.0091	0781	.2529
SOCIAL2	.0035	.1343	.0007	1	.9794	.0000	1.0035
ETHNIC3	8396	.2747	9.3411	1	.0022	0966	.4319
INDEPEND	0057	.3004	.0004	1	.9848	.0000	.9943
FEHE	1797	.5874	.0936	1	.7596	.0000	.8355
GRAMMAR	.1229	.5286	.0541	1	.8161	.0000	1.1308
OTHSCHL	.2524	.4143	.3712	1	.5423	.0000	1.2871
LOCAL	2.0007	.3684	29.4892	1	.0000	.1869	7.3941
SHN	.8694	.2414	12.9734	1	.0003	.1181	2.3854
SHG	1.0209	.2092	23.8145	1	.0000	.1665	2.7757
Constant	-8.1714	2.3981	11.6106	1	.0007		

MEDSCHL: S36 YEARAPP: 97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.5885	.1049	31.4762	1	.0000	.1765	1.8012
AN	.2651	.3301	.6450	1	.4219	.0000	1.3035
NONSCIA	-1.2929	.4811	7.2219	1	.0072	0743	.2745
RESITS	-2.5858	.3786	46.6530	1	.0000	2173	.0753
GSTAKEN	.6404	.3102	4.2625	1	.0390	.0489	1.8973
GSGRADE1	.0668	.2195	.0926	1	.7609	.0000	1.0691
ASN	3747	.3609	1.0776	1	.2992	.0000	.6875
APPDATE1	5374	.1843	8.5042	1	.0035	0829	.5843
PREVAPP	0067	.3260	.0004	1	.9835	.0000	.9933
INSURNCE	2535	.3082	.6764	1	.4108	.0000	.7761
LE4MED	-1.0169	.3665	7.6989	1	.0055	0776	.3617
MEDAPP6	1491	.4711	.1002	1	.7516	.0000	.8615
SEX1	0865	.2302	.1413	1	.7070	.0000	.9171
MATURE	8211	.5547	2.1915	1	.1388	0142	.4400
SOCIAL2	0215	.1216	.0312	1	.8597	.0000	.9787
ETHNIC3	-1.1014	.2737	16.1935	1	.0001	1225	.3324
INDEPEND	.1711	.3189	.2878	1	.5916	.0000	1.1866
FEHE	-1.1824	.5925	3.9821	1	.0460	0458	.3065
GRAMMAR	1.1495	.4971	5.3465	1	.0208	.0595	3.1565
OTHSCHL	5585	.4256	1.7222	1	.1894	.0000	.5720
LOCAL	1.8670	.3456	29.1795	1	.0000	.1695	6.4687
SHN	.5510	.2410	5.2265	1	.0222	.0584	1.7351
SHG	.8230	.2288	12.9394	1	.0003	.1076	2.2773
Constant	-6.3618	2.5135	6.4064	1	.0114		

S49: St George's Hospital Medical School (University of London){tc "S49: St George's Hospital Medical School (University of London)" \1 3}

MEDSCHL: S49 YEARAPP: 96.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.6063	.0599	102.2802	1	.0000	.2493	1.8336
AN	.3048	.1447	4.4351	1	.0352	.0389	1.3564
NONSCIA	.1871	.2014	.8635	1	.3528	.0000	1.2058
RESITS	-1.5377	.3153	23.7772	1	.0000	1162	.2149
GSTAKEN	.1074	.2045	.2758	1	.5994	.0000	1.1134
GSGRADE1	.3286	.1694	3.7624	1	.0524	.0331	1.3890
ASN	.0331	.1515	.0476	1	.8272	.0000	1.0336
APPDATE1	5375	.1199	20.1095	1	.0000	1060	.5842
PREVAPP	3681	.2509	2.1522	1	.1424	0097	.6921
INSURNCE	4632	.2038	5.1656	1	.0230	0443	.6293
LE4MED	4654	.3542	1.7264	1	.1889	.0000	.6279
MEDAPP6	5993	.3671	2.6649	1	.1026	0203	.5492
SEX1	.0444	.1535	.0837	1	.7724	.0000	1.0454
MATURE	9187	.3111	8.7177	1	.0032	0645	.3990
SOCIAL2	0507	.0855	.3512	1	.5534	.0000	.9506
ETHNIC3	3871	.1651	5.4956	1	.0191	0466	.6790
INDEPEND	.0247	.2237	.0122	1	.9120	.0000	1.0250
FEHE	7829	.3518	4.9522	1	.0261	0428	.4571
GRAMMAR	.2227	.2869	.6027	1	.4375	.0000	1.2495
OTHSCHL	3267	.2645	1.5262	1	.2167	.0000	.7213
LOCAL	.3552	.1790	3.9360	1	.0473	.0346	1.4265
Constant	-4.0288	1.1127	13.1085	1	.0003		

MEDSCHL: S49 YEARAPP: 97.00

VariableBS.E.WalddfSigRExp(B)AG.4848.066652.98941.0000.19071.6239AN.3286.18982.99851.0833.02671.3890NONSCIA-.2386.22931.08321.2980.0000.7877RESITS-2.6160.356453.86861.0000-.1924.0731GSTAKEN.3198.26821.42161.2331.00001.3769GSGRADE1.5216.21305.99571.0143.05341.6846ASN.4147.19834.37321.0365.04111.5139APPDATE1-.5303.134515.53681.0001-.0983.5884PREVAPP-1.2962.306117.93031.0000-.1066.2736INSURNCE-.7095.22699.77541.0018.0745.4919LE4MED-1.3824.49227.88931.0050-.0648.2510MEDAPP6-2.5179.652914.87361.0001-.0958.0806SEX1.3611.18653.74691.0529.03531.4349MATURE-2.2941.427728.77551.0000.1382.1009SOCIAL2-.1594.1084.26111.1415.0107.8527INDEPEND-.1856.2618.50241.4784.0000.8306</td

U60: United Medical and Dental Schools of Guy's and St Thomas's Hospitals (University of London){tc "U60: United Medical and Dental Schools of Guy's and St Thomas's Hospitals (University of London)" \1 3}

MEDSCHL: U60 YEARAPP: 96.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.6087	.0508	143.4943	1	.0000	.2442	1.8380
AN	.2463	.1198	4.2271	1	.0398	.0306	1.2793
NONSCIA	.1977	.1500	1.7370	1	.1875	.0000	1.2186
RESITS	.2981	.2815	1.1209	1	.2897	.0000	1.3473
GSTAKEN	.1016	.1578	.4145	1	.5197	.0000	1.1069
GSGRADE1	.2739	.1151	5.6638	1	.0173	.0393	1.3151
ASN	.0106	.1213	.0077	1	.9300	.0000	1.0107
APPDATE1	4036	.0973	17.1881	1	.0000	0800	.6679
PREVAPP	4866	.2413	4.0686	1	.0437	0295	.6147
INSURNCE	7259	.1659	19.1450	1	.0000	0850	.4839
LE4MED	7737	.3228	5.7461	1	.0165	0397	.4613
MEDAPP6	2679	.2873	.8696	1	.3511	.0000	.7650
SEX1	.0406	.1191	.1161	1	.7333	.0000	1.0414
MATURE	6970	.2766	6.3476	1	.0118	0428	.4981
SOCIAL2	1539	.0696	4.8944	1	.0269	0349	.8573
ETHNIC3	7236	.1271	32.4041	1	.0000	1132	.4850
INDEPEND	.1947	.1755	1.2306	1	.2673	.0000	1.2150
FEHE	4966	.2932	2.8675	1	.0904	0191	.6086
GRAMMAR	0625	.2208	.0802	1	.7771	.0000	.9394
OTHSCHL	2586	.2110	1.5032	1	.2202	.0000	.7721
LOCAL	.0511	.1365	.1402	1	.7081	.0000	1.0525
Constant	-5.6058	.8630	42.1971	1	.0000		

MEDSCHL: U60 YEARAPP: 97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.5505	.0536	105.3438	1	.0000	.2131	1.7341
AN	.0576	.1237	.2170	1	.6414	.0000	1.0593
NONSCIA	.2403	.1520	2.4986	1	.1139	.0148	1.2716
RESITS	.0571	.2468	.0534	1	.8172	.0000	1.0587
GSTAKEN	.1929	.1603	1.4473	1	.2290	.0000	1.2128
GSGRADE1	.0809	.1163	.4832	1	.4870	.0000	1.0842
ASN	0438	.1364	.1032	1	.7480	.0000	.9571
APPDATE1	7831	.0994	62.1066	1	.0000	1625	.4570
PREVAPP	5648	.2309	5.9845	1	.0144	0418	.5685
INSURNCE	4970	.1737	8.1882	1	.0042	0522	.6084
LE4MED	1692	.3101	.2979	1	.5852	.0000	.8443
MEDAPP6	.0887	.3360	.0697	1	.7918	.0000	1.0928
SEX1	.0864	.1231	.4928	1	.4827	.0000	1.0903
MATURE	6632	.2718	5.9530	1	.0147	0417	.5152
SOCIAL2	1876	.0722	6.7623	1	.0093	0457	.8289
ETHNIC3	9005	.1324	46.2778	1	.0000	1395	.4064
INDEPEND	.1930	.1812	1.1354	1	.2866	.0000	1.2129
FEHE	8738	.3375	6.7011	1	.0096	0455	.4174
GRAMMAR	1814	.2279	.6332	1	.4262	.0000	.8341
OTHSCHL	0729	.2197	.1100	1	.7401	.0000	.9297
LOCAL	.0475	.1411	.1132	1	.7365	.0000	1.0486
Constant	-2.6574	.8824	9.0700	1	.0026		

U80: University College London Medical School (University of London){tc "U80: University College London Medical School (University of London)" \1 3}

MEDSCHL: U80 YEARAPP: 96.00

		Variable	g in the	Faultion			
		Variabie		Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
	2246	0.4.0.0		-		1.000	1 4000
AG	.3946	.0498	62.6897	1	.0000	.1626	1.4838
AN	0906	.1150	.6203	1	.4309	.0000	.9134
NONSCIA	.2977	.1452	4.2008	1	.0404	.0310	1.3468
RESITS	8789	.2355	13.9275	1	.0002	0721	.4152
GSTAKEN	0787	.1663	.2238	1	.6362	.0000	.9243
GSGRADE1	.2723	.1352	4.0536	1	.0441	.0299	1.3129
ASN	.3005	.1129	7.0799	1	.0078	.0470	1.3505
APPDATE1	6443	.0982	43.0769	1	.0000	1338	.5250
PREVAPP	.1611	.2001	.6478	1	.4209	.0000	1.1748
INSURNCE	4648	.1782	6.8047	1	.0091	0457	.6283
LE4MED	.3935	.2230	3.1141	1	.0776	.0220	1.4822
MEDAPP6	3232	.3404	.9011	1	.3425	.0000	.7239
SEX1	.0853	.1210	.4961	1	.4812	.0000	1.0890
MATURE	1545	.2562	.3639	1	.5464	.0000	.8568
SOCIAL2	1732	.0748	5.3655	1	.0205	0383	.8409
ETHNIC3	9678	.1307	54.7977	1	.0000	1517	.3799
INDEPEND	2965	.1748	2.8772	1	.0898	0195	.7434
FEHE	4154	.2890	2.0662	1	.1506	0054	.6601
GRAMMAR	3770	.2371	2.5279	1	.1119	0152	.6859
OTHSCHL	2340	.2067	1.2824	1	.2574	.0000	.7913
LOCAL	.1126	.1351	.6951	1	.4044	.0000	1.1192
Constant	-1.9392	.9095	4.5460	1	.0330		

MEDSCHL: U80 YEARAPP: 97.00

		Variable	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.3999	.0485	68.1001	1	.0000	.1637	1.4916
AN	.0213	.1186	.0323	1	.8574	.0000	1.0215
NONSCIA	.3462	.1365	6.4312	1	.0112	.0424	1.4137
RESITS	-1.0013	.2360	18.0071	1	.0000	0806	.3674
GSTAKEN	2492	.1597	2.4351	1	.1186	0133	.7794
GSGRADE1	.3237	.1321	6.0011	1	.0143	.0403	1.3822
ASN	.2486	.1143	4.7332	1	.0296	.0333	1.2823
APPDATE1	4014	.0903	19.7403	1	.0000	0848	.6694
PREVAPP	2404	.2236	1.1552	1	.2825	.0000	.7863
INSURNCE	6358	.1636	15.1064	1	.0001	0729	.5295
LE4MED	1664	.2550	.4257	1	.5141	.0000	.8467
MEDAPP6	3559	.3437	1.0720	1	.3005	.0000	.7005
SEX1	.2899	.1153	6.3192	1	.0119	.0419	1.3363
MATURE	4773	.2546	3.5147	1	.0608	0248	.6205
SOCIAL2	.0076	.0671	.0129	1	.9097	.0000	1.0076
ETHNIC3	8132	.1241	42.9671	1	.0000	1289	.4434
INDEPEND	0266	.1670	.0253	1	.8736	.0000	.9738
FEHE	8506	.3132	7.3752	1	.0066	0467	.4272
GRAMMAR	2498	.2159	1.3386	1	.2473	.0000	.7789
OTHSCHL	0284	.1970	.0207	1	.8856	.0000	.9720
LOCAL	.2566	.1301	3.8920	1	.0485	.0277	1.2926
Constant	-3.2861	.8717	14.2118	1	.0002		

W10: University of Wales College of Medicine{tc "W10: University of Wales College of Medicine" $\1$ 3}

MEDSCHL: W10 YEARAPP: 96.00

		Variables	in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.4975	.0530	87.9954	1	.0000	.2144	1.6447
AN	.0002	.1420	.0000	1	.9991	.0000	1.0002
NONSCIA	.2291	.1699	1.8182	1	.1775	.0000	1.2575
RESITS	6194	.3019	4.2099	1	.0402	0344	.5382
GSTAKEN	.1713	.1684	1.0346	1	.3091	.0000	1.1868
GSGRADE1	.3300	.1356	5.9281	1	.0149	.0458	1.3910
ASN	1254	.1555	.6499	1	.4201	.0000	.8822
APPDATE1	7893	.1111	50.4347	1	.0000	1609	.4542
PREVAPP	2790	.2675	1.0881	1	.2969	.0000	.7565
INSURNCE	4085	.1744	5.4884	1	.0191	0432	.6646
LE4MED	-1.0309	.2528	16.6270	1	.0000	0884	.3567
MEDAPP6	-2.4509	.4297	32.5354	1	.0000	1278	.0862
SEX1	.5580	.1431	15.2110	1	.0001	.0840	1.7471
MATURE	7711	.2711	8.0883	1	.0045	0570	.4625
SOCIAL2	0451	.0816	.3050	1	.5808	.0000	.9559
ETHNIC3	5432	.1774	9.3767	1	.0022	0628	.5809
INDEPEND	2090	.2073	1.0160	1	.3135	.0000	.8114
FEHE	5532	.2445	5.1195	1	.0237	0408	.5751
GRAMMAR	2163	.2626	.6788	1	.4100	.0000	.8055
OTHSCHL	2833	.2179	1.6912	1	.1934	.0000	.7533
LOCAL	.7860	.1599	24.1643	1	.0000	.1088	2.1945
Constant	-2.4745	.9884	6.2677	1	.0123		

MEDSCHL: W10 YEARAPP: 97.00

		Variables	s in the	Equation			
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
AG	.3588	.0693	26.7934	1	.0000	.1428	1.4316
AN	.2437	.1678	2.1100	1	.1463	.0095	1.2760
NONSCIA	.2929	.1805	2.6333	1	.1046	.0228	1.3403
RESITS	4135	.3653	1.2809	1	.2577	.0000	.6613
GSTAKEN	.5452	.1818	8.9912	1	.0027	.0758	1.7250
GSGRADE1	.0846	.1287	.4323	1	.5108	.0000	1.0883
ASN	.0397	.1643	.0584	1	.8091	.0000	1.0405
APPDATE1	5587	.1267	19.4473	1	.0000	1198	.5719
PREVAPP	1535	.3569	.1849	1	.6672	.0000	.8577
INSURNCE	6783	.2053	10.9184	1	.0010	0856	.5075
LE4MED	4112	.3317	1.5366	1	.2151	.0000	.6629
MEDAPP6	-1.6281	.6245	6.7975	1	.0091	0628	.1963
SEX1	.2118	.1664	1.6202	1	.2031	.0000	1.2360
MATURE	1969	.3707	.2823	1	.5952	.0000	.8212
SOCIAL2	0739	.0933	.6279	1	.4281	.0000	.9287
ETHNIC3	5521	.2363	5.4564	1	.0195	0533	.5758
INDEPEND	1897	.2226	.7267	1	.3939	.0000	.8272
FEHE	4865	.3225	2.2751	1	.1315	0150	.6148
GRAMMAR	.1993	.2749	.5254	1	.4685	.0000	1.2205
OTHSCHL	1723	.2701	.4071	1	.5234	.0000	.8417
LOCAL	.6786	.1758	14.9014	1	.0001	.1030	1.9712
Constant	-3,7008	1.1821	9.8018	1	.0017		

Appendix 11: Effect sizes of significant effects at individual medical schools{tc "Appendix 11: Effect sizes of significant effects at individual medical schools" \l 2}.

Values marked 'na' (not applicable) have been omitted as they involve A-levels at Scottish schools, or Scottish Highers at any school. The precise values are however available in the detailed output for individual schools in the previous appendix.

	Educational							Application					Demographic									
1996	M N I e 0 + a 0 P n f c r - - S L 1 c e e e i v V v - e I e r i g s e r I c g s e r J a - d I e e e e e e d I e e e e	Resat A- levels/ Highers	Gen- eral Studie s Taken	Gen- eral Studies Grade	No of AS- levels	No of Scot- tish Highers	Mean grade Scot- tish Highers	App'n date	Prev App'n	Insur- amce	Less than 5 med app'ns	Six medical app'ns	Sex	Mature	Social class	Ethnic mino- rity	Non- State school	FE/ HE	Gram- mar Sch'l	Other sch'l	Local App'ant	Gap year
A20: Aberdeen	n n r a a a	1	na	na	na	na	na				-1.157 675										1.670 .813	-3.44
B32: Birmingham	3 7 7 6 8 5					na	na	767 680														
B78: Bristol	5 3 8 6 8 5					na	na	284 680													.438 .356	

C05: Cambridge	 8 2 2 9 0 9 8 5 5 9 0 8					na	na	na								345 622				
C40: CXWMS	5 6 4 5 2 4	-1.643 -1.423				na	na	955 986	-	1.118 550		-2.055 912			282 269	837 769				
D65: Dundee	N n n a a a		na	na	na	na	na							-1.409 -1.348		662 526			2.250 1.718	1.58
E56: Edinburgh	N n n a a a		na	na	na	na	na	558 410												.73
G28: Glasgow	N n n a a a		na	na	na	na	na	450 460			-1.191 944		.544 .525						.817 .882	
150: Imperial College	3 5 2 4 6 4					na	na						.285 .546		204 287	835 -1.029	-1.348 -1.165			
K72: King's College	6 3 4 4 6 6					na	na	-1.335 429					.493 .630			593 756				
L23: Leeds	2 1 9 2 8 4					na	na	297 263		303 444	807 543		.361 .499			614 896	889 995	443 609		

L34: Leicester-	2 6 8 2 1 8	1.730 786			na	na					.611 .419	-1.115 -1.927	530 402				
L41: Liverpool	4 0 9 3 7 0				na	na	481 526			-1.286 -1.064	.472 .263		544 528			.535 .297	
M20: Manchester	2 6 8 2 3 7		.381 .482	.405 .188	na	na	439 641	631 -1.034	378 289	981 439	.494 .207		479 401				.667
N21: Newcastle	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.367 .467	na	na	320 306				.812 .502						
N84: Nottingham	5 8 7 4 8 4				na	na	493 728				.640 .604	.985 1.167	506 900				
O33: Oxford	9 7 1 9 6 0				na	na	na										

Q50: QMW	4 0 7 4 3 5	-2.126 -1.311				na	na	483 852	994 578		-1.346 807	.470 .327	-1.536 738	683 883	773 722			
Q75: Queen's, Belfast	8 1 0 8 5 0					na	na											
R60: Royal Free	6 9 4 8 7	733 -1.055		.388 .581		na	na	562 504				.230 .530						
S18: Sheffield	5 8 0 4 7 7					na	na					.393 .616		586 676				
S27: Southampton	4 9 7 5 9 9	-2.257 -1.821				na	na	326 -1.575	2.240 1.058					802 373				
S36: St. Andrews	n n n a a a	-1.418 -2.586	na	na	na	na	na	723 537			-1.507 -1.017			840 -1.101			2.001 1.867	-2.53
S49: St. George's	6 0 6 4 8 5	-1.538 -2.616				na	na	538 530		463 710			919 -2.294	387 645	783 -1.254			

U60: UMDS	6 0 9 5 5 5 1			na	na	404 783	726 497			724 901				
U80: UCL	3 9 5 4 0 0	879 -1.001		na	na	644 401	465 636			968 813				
W10: Wales	4 9 8 3 5 9			na	na	789 559	409 678	-2.451 -1.628		543 552			.786 .679	

Bibliography{tc ''Bibliography''}

1 McKenzie KJ. Racial discrimination in medicine [Editorial]. Brit Med J 1995;310:478-479.

2 Steenland K. The GMC, racism, and complaints against doctors. Brit Med J 1996;312:1314-1315.

3 Esmail A, Everington S, Doyle H. Racial discrimination in the allocation of distinction awards? Analysis of list of award holders by type of award, specialty and region. *Brit Med J* 1998;**316**:193-195.

4 Rubin P. Distinction awards and racial discrimination. Brit Med J 1998;316:165

5 Esmail A, Carnall D. Tackling racism in the NHS. Brit Med J 1997;314:618-619.

6 McManus IC, Richards P, Winder BC, Sproston KA. Do UK medical school applicants prefer interviewing to non-interviewing schools? *Advances in Health Sciences Education* 1999;(in press)

7 Paterson L, Goldstein H. New statistical methods for analysing social structures: an introduction to multilevel models. *British Educational Research Journal* 1991;**17**:387-393.

8 Rice N, Leyland A. Multilevel models: applications to health data. J Health Serv Res Policy 1996;1:154-164.

9 Goldstein H. Multilevel statistical models. London: Arnold, 1995;

10 McManus IC, Richards P, Maitlis SL. Prospective study of the disadvantage of people from ethnic minority groups applying to medical schools in the United Kingdom. *Brit Med J* 1989;**298**:723-726.

11 Universities and Colleges Admissions Service. UCAS Annual Report 1997 Entry. Cheltenham: Universities and Colleges Admissions Service, 1998;

12 McManus IC, Richards P. An audit of admission to medical school: 1. Acceptances and rejects. Brit Med J 1984;289:1201-1204.

13 McManus IC, Richards P, Winder BC, Sproston KA, Styles V. Medical school applicants from ethnic minorities: identifying if and when they are disadvantaged. *Brit Med J* 1995;**310**:496-500.

14 Cohen J, Cohen P. Applied multiple regression/correlation for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum, 1983;

15 Kromrey JD, Hines CV. Nonrandomly missing data in multiple regression: an empirical comparison of common missing-data treatments. *Educational and Psychological Measurement* 1994;**54**:573-593.

16 McManus IC, Richards P, Winder BC, Sproston KA. Prescription failing students [letter]. *Times Higher Education Supplement* 1994;**21st October**:14

17 McManus IC, Richards P, Winder BC, Sproston KA. Final examination performance of students from ethnic minorities. *Med Educ* 1996;**30**:195-200.

18 Collier J, Burke A. Racial and sexual discrimination in the selection of students for London medical schools. *Med Educ* 1986;20:86-90.

19 Esmail A, Nelson P, Primarolo D, Toma T. Acceptance into medical school and racial discrimination. *Brit Med J* 1995;**310**:501-502.

20 Anonymous. Selection of medical students. Brit Med J 1946;ii:375-376.

21 Harris AD. Selection of medical students. Lancet 1948; ii: 317-321.

22 Sheldrake P. How should we select? - a sociologist's view. British Journal of Medical Education 1975;9:91-97.

23 Anderson J, Hughes D, Wakeford R. Medical student selection: a tentative attempt to establish a code of practice. *Brit Med J* 1980;1:1216-1218.

24 Lockhart LB. Why aren't they choosing the right candidates for medicine? *Lancet* 1981;546-548.

25 Munro A. The wrong doctors: selection or training at fault? Journal of Medical Ethics 1981;7:57-61.

26 Crisp AH. Selection of medical students - is intelligence enough? discussion paper. Journal of the Royal Society of Medicine 1984;77:35-39.

27 Roberts GD, Porter AMW. Medical student selection - time for change: discussion paper. *Journal of the Royal Society of Medicine* 1989;**82**:288-291.

28 Lowry S. Medical education: Student selection. Brit Med J 1992;305:1352-1354.

29 Neame RLB, Powis DA, Bristow T. Should medical students be selected only from recent school-leavers who have studied science? *Med Educ* 1992;**26**:433-440.

30 Powis DA, McManus IC, Cleave-Hogg D. Selection of medical students: Philosophic, political, social and educational bases. *Teaching and Learning in Medicine* 1992;**4**:25-34.

31 Goldbeck-Wood S. Choosing tomorrow's doctors. Brit Med J 1996;313:569-570.

32 Magnusson S. Oh, for a little humanity. Brit Med J 1996;313:1601-1603.

33 McManus IC, Richards P. An audit of admission to medical school: 2. Shortlisting and interviews. *Brit Med J* 1984;289:1288-1290.

34 McManus IC, Richards P. An audit of admission to medical school: 3. Applicants' perceptions and proposals for change. *Brit Med J* 1984;**289**:1365-1367.

35 McManus IC, Richards P. Admission to medical school [letter]. Brit Med J 1985;290:319-320.

36 Shaunak S. Admission to medical school [letter]. Brit Med J 1984;289:1535

37 Jesson D, Mayston D, Smith P. Performance assessment in the education sector: educational and economic perspectives. *Oxford Review of Education* 1987;**13**:249-266.

38 McManus IC, Richards P. Medical schools and racial discrimination: Comparison between medical schools is unjustified [letter]. *Brit Med J* 1995;**310**:1530-1531.

39 Solomos J. Race and racism in Britain. London: Macmillan, 1993;

40 Commission for Racial Equality. *Report of a formal investigation into St George's Hospital Medical School*. London: Commission for Racial Equality, 1988;

41 McManus IC. From selection to qualification: How and why medical students change. In: Allen I, Brown P, Hughes P, eds. *Choosing tomorrow's doctors*. London: Policy Studies Institute, 1997;60-79.

42 McManus IC, Vincent CA. Selecting and educating safer doctors. In: Vincent CA, Ennis M, Audley RJ, eds. *Medical accidents*. Oxford: Oxford University Press, 1993;80-105.

43 Higgins T. Applications procedures to higher education: an admission of failure? In: Haselgrove S, ed. *The student experience*. Open University Press, 1994;13-19.

44 Office of Population Censuses and Surveys. Census Reports, Report for Great Britain, Part I, Volume 1. London: HMSO, 1993;134